Skip to main content

Hopf Algebras and Frobenius Algebras in Finite Tensor Categories

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 295))

Abstract

We discuss algebraic and representation theoretic structures in braided tensor categories \(\mathcal{C}\) which obey certain finiteness conditions. A lot of interesting structure of such a category is encoded in a Hopf algebra \(\mathcal{H}\) in \(\mathcal{C}\). In particular, the Hopf algebra \(\mathcal{H}\) gives rise to representations of the modular group SL(2,ℤ) on various morphism spaces. We also explain how every symmetric special Frobenius algebra in a semisimple modular category provides additional structure related to these representations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Bakalov and A.A. Kirillov, Lectures on Tensor Categories and Modular Functors (American Mathematical Society, Providence 2001)

    MATH  Google Scholar 

  2. J. Böckenhauer and D.E. Evans, Modular invariants, graphs, and α -induction for nets of subfactors, Commun. Math. Phys. 197 (1998) 361–386 [hep-th/9801171]

    Article  MathSciNet  MATH  Google Scholar 

  3. Q. Chen, S. Kuppum, and P. Srinivasan, On the relation between the WRT invariant and the Hennings invariant, Math. Proc. Camb. Philos. Soc. 146 (2009) 151–163, arXiv:0709.2318 [math.QA]

    Article  MathSciNet  MATH  Google Scholar 

  4. P.I. Etingof and V. Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004) 627–654 [math.QA/0301027]

    MathSciNet  MATH  Google Scholar 

  5. J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) 354–430 [hep-th/0607247]

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators I: partition functions, Nucl. Phys. B 646 (2002) 353–497 [hep-th/0204148]

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Fuchs, I. Runkel, and C. Schweigert, The fusion algebra of bimodule categories, Appl. Categ. Struct. 16 (2008) 123–140 [math.CT/0701223]

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Fuchs and C. Schweigert, Category theory for conformal boundary conditions, Fields Inst. Commun. 39 (2003) 25–71 [math.CT/0106050]

    MathSciNet  MATH  Google Scholar 

  9. M.R. Gaberdiel and I. Runkel, From boundary to bulk in logarithmic CFT, J. Phys. A 41 (2008) 075402, arXiv:0707.0388 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  10. A.M. Gainutdinov and I.Yu. Tipunin, Radford, Drinfeld, and Cardy boundary states in (1,p) logarithmic conformal field models, J. Phys. A 42 (2009) 315207, arXiv:0711.3430 [hep-th]

    MathSciNet  MATH  Google Scholar 

  11. M.A. Hennings, Invariants of links and 3-manifolds obtained from Hopf algebras, J. Lond. Math. Soc. 54 (1996) 594–624

    Article  MathSciNet  MATH  Google Scholar 

  12. Y.-Z. Huang, Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Natl. Acad. Sci. USA 102 (2005) 5352–5356 [math.QA/0412261]

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Joyal and R. Street, The geometry of tensor calculus, I, Adv. Math. 88 (1991) 55–112

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Kassel, Quantum Groups (Springer, New York 1995)

    Book  MATH  Google Scholar 

  15. Y. Kawahigashi, R. Longo, and M. Müger, Multi-interval subfactors and modularity of representations in conformal field theory, Commun. Math. Phys. 219 (2001) 631–669 [math.OA/9903104]

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Kerler, Genealogy of nonperturbative quantum-invariants of 3-manifolds: the surgical family, in: Quantum Invariants and Low-Dimensional Topology, J.E. Andersen et al., eds. (Dekker, New York 1997), p. 503–547 [q-alg/9601021]

    Google Scholar 

  17. T. Kerler and V.V. Lyubashenko, Non-semisimple Topological Quantum Field Theories for 3-Manifolds with Corners [Springer Lecture Notes in Mathematics 1765] (Springer, New York, 2001)

    MATH  Google Scholar 

  18. A.A. Kirillov and V. Ostrik, On a q -analog of McKay correspondence and the ADE classification of \(\widehat{\mathfrak{sl}}(2)\) conformal field theories, Adv. Math. 171 (2002) 183–227 [math.QA/0101219]

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys. 7 (1995) 567–598 [hep-th/9411077]

    Article  MathSciNet  MATH  Google Scholar 

  20. V.V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Commun. Math. Phys. 172 (1995) 467–516 [hep-th/9405167]

    Article  MathSciNet  MATH  Google Scholar 

  21. V.V. Lyubashenko, Modular transformations for tensor categories, J. Pure Appl. Algebra 98 (1995) 279–327

    Article  MathSciNet  MATH  Google Scholar 

  22. V.V. Lyubashenko and S. Majid, Braided groups and quantum Fourier transform, J. Algebra 166 (1994) 506–528

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Majid, Reconstruction theorems and rational conformal field theories, Int. J. Mod. Phys. A 6 (1991) 4359–4374

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Miyamoto, Modular invariance of vertex operator algebras satisfying C 2 -co finiteness, Duke Math. J. 122 (2004) 51–91 [math.QA/0209101]

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Nagatomo and A. Tsuchiya, The triplet vertex operator algebra W(p) and the restricted quantum group at root of unity, preprint, arXiv:0902.4607 [math.QA]

  26. D. Nikshych, V. Turaev, and L. Vainerman, Quantum groupoids and invariants of knots and 3-manifolds, Topol. Appl. 127 (2003) 91–123 [math.QA/0006078]

    Article  MATH  Google Scholar 

  27. V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003) 177–206 [math.QA/0111139]

    Article  MathSciNet  MATH  Google Scholar 

  28. N.Yu. Reshetikhin and V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547–597

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Schweigert, J. Fuchs, and I. Runkel, Categorification and correlation functions in conformal field theory, in: Proceedings of the ICM 2006, M. Sanz-Solé, J. Soria, J.L. Varona, and J. Verdera, eds. (European Mathematical Society, Zürich 2006), p. 443–458 [math.CT/0602079]

    Google Scholar 

  30. V.G. Turaev, Quantum Invariants of Knots and 3-Manifolds (de Gruyter, New York 1994)

    MATH  Google Scholar 

  31. F. Van Oystaeyen and Y.H. Zhang, The Brauer group of a braided monoidal category, J. Algebra 202 (1998) 96–128

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Virelizier, Kirby elements and quantum invariants, Proc. Lond. Math. Soc. 93 (2006) 474–514 [math.GT/0312337]

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Xu, New braided endomorphisms from conformal inclusions, Commun. Math. Phys. 192 (1998) 349–403

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J.F. is partially supported by VR under project no. 621-2009-3343. C.S. is partially supported by the DFG Priority Program 1388 “Representation theory.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schweigert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schweigert, C., Fuchs, J. (2012). Hopf Algebras and Frobenius Algebras in Finite Tensor Categories. In: Joseph, A., Melnikov, A., Penkov, I. (eds) Highlights in Lie Algebraic Methods. Progress in Mathematics, vol 295. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8274-3_8

Download citation

Publish with us

Policies and ethics