Skip to main content

Principle of Continuity: Sixteenth–Nineteenth Centuries

  • Chapter
  • First Online:
Excursions in the History of Mathematics
  • 3083 Accesses

Abstract

The Principle of Continuity was a very broad law, used widely and importantly – though often not explicitly formulated – throughout the seventeenth, eighteenth, and nineteenth centuries. In general terms, the Principle of Continuity says that what holds in a given case continues to hold in what appear to be like cases. Specifically, it maintains that (1) What is true for positive numbers is true for negative numbers. (2) What is true for real numbers is true for complex numbers. (3) What is true up to the limit is true at the limit. (4) What is true for finite quantities is true for infinitely small and infinitely large quantities. (5) What is true for polynomials is true for power series. (6) What is true for a given figure is true for a figure obtained from it by continuous motion. (7) What is true for ordinary integers is true for (say) Gaussian integers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. F. Atiyah, Bakerian lecture, 1975: global geometry, Amer. Math. Monthly 111 (2004) 716–723.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. G. Bashmakova, Diophantus and Diophantine Equations, Math. Assoc. of Amer., 1997.

    Google Scholar 

  3. G. Birkhoff and M. K. Bennett, Felix Klein and his “Erlanger Programm.” In History and Philosophy of Modern Mathematics, ed. by W. Aspray and P. Kitcher, Univ. of Minnesota Press, 1988, pp. 145–176.

    Google Scholar 

  4. H. J. M. Bos, Differentials, higher-order differentials and the derivative in the Leibnizian calculus, Arch. Hist. Exact Sc. 14 (1974) 1–90.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. J. M. Bos, C. Kers, F. Oort, and D. W. Raven, Poncelet’s closure theorem, Expositiones Math. 5 (1987) 289–364.

    MATH  MathSciNet  Google Scholar 

  6. U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag,1986.

    Google Scholar 

  7. N. Bourbaki, Elements of the History of Mathematics, Springer-Verlag, 1991.

    Google Scholar 

  8. E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, 1986.

    Google Scholar 

  9. D. Corfield, Towards a Philosophy of Real Mathematics, Cambridge Univ. Press, 2003.

    Book  MATH  Google Scholar 

  10. J. W. Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite, Harvard Univ. Press, 1979.

    MATH  Google Scholar 

  11. C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.

    Google Scholar 

  12. C. G. Fraser, The calculus as algebraic analysis: some observations on mathematical analysis in the 18th century, Arch. Hist. Exact Sci. 39 (1989) 317–335.

    MATH  MathSciNet  Google Scholar 

  13. H. Freudenthal, The Didactic Phenomenology of Mathematical Structures, Reidel, 1983.

    Google Scholar 

  14. J. V. Grabiner, The Origins of Cauchy’s Rigorous Calculus, MIT Press, 1981.

    Google Scholar 

  15. H. Grant, Leibniz and the spell of the continuous, College Math. Jour. 25 (1994) 291–294.

    Article  Google Scholar 

  16. J. Gray, The Worlds out of Nothing: A Course in the History of Geometry in the19 th Century, Springer, 2007.

    Google Scholar 

  17. T. L. Hankins, Sir William Rowan Hamilton, Johns Hopkins Univ. Press, 1980.

    MATH  Google Scholar 

  18. V. J. Katz, A History of Mathematics: An Introduction, 3rd ed., Addison-Wesley, 2009.

    Google Scholar 

  19. J. Keisler, Elementary Calculus: An Infinitesimal Approach, 2nd ed., Prindle, Weber & Schmidt, 1986.

    Google Scholar 

  20. F. Klein, A comparative review of recent researches in geometry, New York Math. Soc. Bull. 2 (1893) 215–249.

    Article  MATH  Google Scholar 

  21. I. Kleiner, A History of Abstract Algebra, Birkhäuser, 2007.

    Google Scholar 

  22. E. Knobloch, Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums, Synthese 133 (2002) 59–73.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Knobloch, Analogy and the growth of mathematical knowledge. In The Growth of Mathematical Knowledge, ed. by E. Grosholz and H. Breger, Kluwer Acad. Publ., Amsterdam, 2000, pp. 295–314.

    Google Scholar 

  24. E. Koppelman, The calculus of operations and the rise of abstract algebra, Arch. Hist. Exact Sc. 8 (1971/72) 155–242.

    Google Scholar 

  25. M. H. Krieger, Some of what mathematicians do, Notices of the Amer. Math. Soc. 51 (2004) 1226–1230.

    MATH  MathSciNet  Google Scholar 

  26. D. Laugwitz, Bernhard Riemann, 1826–1866, Birkhäuser, 1999.

    Google Scholar 

  27. D. Laugwitz, On the historical development of infinitesimal mathematics I, II, Amer. Math. Monthly 104 (1997) 447–455, 660–669.

    Google Scholar 

  28. P. J. Nahin, An Imaginary Tale: The Story of \(\sqrt{-1}\), Princeton Univ. Press, 1998.

    Google Scholar 

  29. G. Polya, Mathematics and Plausible Reasoning, 2 Vols., Princeton Univ. Press, 1954.

    Google Scholar 

  30. H. M. Pycior, George Peacock and the British origins of symbolical algebra, Hist. Math. 8 (1981) 23–45.

    Article  MathSciNet  Google Scholar 

  31. A. Robinson, Non-Standard Analysis, North-Holland, 1966.

    Google Scholar 

  32. B. A. Rosenfeld, The analytic principle of continuity, Amer. Math. Monthly 112 (2005) 743–748.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Weil, Number Theory: An Approach through History, Birkhäuser, 1984.

    Google Scholar 

  34. A. Weil, De la métaphysique aux mathématiques, Collected Papers, Vol. 2, Springer-Verlag, 1980, pp.408–412. (Translation into English in J. Gray, Open Univ. Course in History of Math., Unit 12, p. 30.)

    Google Scholar 

  35. A. N. Whitehead, An Introduction to Mathematics, Oxford Univ. Press, 1948.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Kleiner .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kleiner, I. (2012). Principle of Continuity: Sixteenth–Nineteenth Centuries. In: Excursions in the History of Mathematics. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8268-2_9

Download citation

Publish with us

Policies and ethics