Paradoxes: What Are They Good For?

  • Israel Kleiner


A paradox has been described as a truth standing on its head to attract attention. Undoubtedly, paradoxes captivate. They also cajole, provoke, amuse, exasperate, and seduce. More importantly, they arouse curiosity, they stimulate, and they motivate. In this chapter we present examples of paradoxes from the history of mathematics which have inspired the clarification of basic concepts and the introduction of major results. Our examples will deal with numbers, logarithms, functions, continuity, tangents, infinite series, sets, curves, and decomposition of geometric objects.


Eighteenth Century Seventeenth Century Negative Number Infinite Series Single Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Akin, A spiteful computer: a determinism paradox, Math. Intell. 14:2 (1992) 45-47.CrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Arnot and K. Small, The economics of traffic congestion, Amer. Scientist 82 (Sept. 1994) 446-455.Google Scholar
  3. 3.
    T. Bass, Road to ruin, Discover 13:5 (May 1993) 56-61.MathSciNetGoogle Scholar
  4. 4.
    E. T. Bell, The Development of Mathematics, 2nd ed., McGraw-Hill, 1945.Google Scholar
  5. 5.
    L. M. Blumenthal, A paradox, a paradox, a most ingenious paradox, Amer. Math. Monthly 47 (1940) 346-353.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    B. Bolzano, Paradoxes of the Infinite, Routledge and Kegan Paaul, 1950 (orig. 1848).Google Scholar
  7. 7.
    H. J. M. Bos, On the representation of curves in Descartes’ Géométrie, Arch. Hist.Exact Sc. 24 (1981) 295-338.Google Scholar
  8. 8.
    U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.Google Scholar
  9. 9.
    V. M. Bradis et al, Lapses in Mathematical Reasoning, The Macmillan Co., 1963.Google Scholar
  10. 10.
    F. Cajori, History of exponential and logarithmic concepts, Amer. Math. Monthly 20 (1913) 5-14, 35-47, 75-84, 107-117, 148-151, 173-182, 205-210.Google Scholar
  11. 11.
    M. T. Carroll et al, The wallet paradox revisited, Math. Mag. 74 (2001) 378-383.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    J. Case, Paradoxes involving conflicts of interest, Amer. Math. Monthly 107 (2000) 33-43.CrossRefMathSciNetGoogle Scholar
  13. 13.
    T. Chow, The surprise examination or unexpected hanging paradox, Amer. Math. Monthly 105 (1998) 41-51.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    P. J. Davis, The Mathematics of Matrices, Blaisdell, 1965.Google Scholar
  15. 15.
    P. J. Davis, Number, ScientificAmer. 211 (Sept. 1964) 51-59.Google Scholar
  16. 16.
    A. De Morgan, A Budget of Paradoxes, Open Court, 1915 (orig. 1872).Google Scholar
  17. 17.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  18. 18.
    N. Faletta, The Paradoxicon, Doubleday & Co., 1983.Google Scholar
  19. 19.
    P. Fjelstad, The repeating integer paradox, Coll. Math. Jour. 26 (1995) 11-15.CrossRefGoogle Scholar
  20. 20.
    J. Fleron, Gabriel’s wedding cake, Coll. Math. Jour. 30 (1999) 35-38.CrossRefGoogle Scholar
  21. 21.
    D. Gale, Paradoxes and a pair of boxes, Math. Intellligencer 13:2 (1991) 31-33.CrossRefGoogle Scholar
  22. 22.
    M. Gardner, Mathematical games, in which ‘monster’ curves force redefinition of the word ‘curve,’ ScientificAmer. 235 (Dec. 1976) 124-133.CrossRefGoogle Scholar
  23. 23.
    R. J. Gardner and S. Wagon, At long last the circle has been squared, Notices Amer. Math. Soc. 36 (1989) 1338-1343.MATHMathSciNetGoogle Scholar
  24. 24.
    R. Gethner, Can you paint a can of paint? Coll. Math. Jour. 36 (2005) 400-402.CrossRefGoogle Scholar
  25. 25.
    R. K. Guy, The strong law of small numbers, Amer. Math. Monthly 95 (1988) 697-712.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    H. Hahn, The crisis in intuition. In The World of Mathematics, ed. by J. R. Newman, Simon & Schuster, 1956, Vol. 3, pp. 1956-1976.Google Scholar
  27. 27.
    R. W. Hamming, The tennis ball paradox, Math. Mag. 62 (1989) 268-269.CrossRefMathSciNetGoogle Scholar
  28. 28.
    P. J. Hilton et al, Mathematical Vistas, Springer, 2002.Google Scholar
  29. 29.
    E. Kasner and J. R. Newman, Mathematics and the Imagination, Simon & Schuster, 1967.Google Scholar
  30. 30.
    M. Kline, Mathematical Thought from Ancient to Modem Times, Oxford Univ. Press, 1972.Google Scholar
  31. 31.
    J. Kocik, Proof without words: Simpson’s paradox, Math. Mag. 74 (2001) 399.CrossRefMathSciNetGoogle Scholar
  32. 32.
    I. Lakatos, Proofs and Refutations, Cambridge Univ. Press, 1976.MATHGoogle Scholar
  33. 33.
    D. Laugwitz, Controversies about numbers and functions. In The Growth of Mathematical Knowledge, E. Grosholz and H. Berger (eds), Kluwer, 2000, pp. 177-198.Google Scholar
  34. 34.
    Leapfrogs, Imaginary Logarithms, E. G. M. Mann & Son (England), 1978.Google Scholar
  35. 35.
    E. Linzer, The two envelope paradox, Amer. Math. Monthly 10 (1994) 417-419.CrossRefMathSciNetGoogle Scholar
  36. 36.
    J. Lützen, Euler’s vision of a generalized partial differential calculus for a generalized kind of function, Math. Mag. 56 (1983) 299-306.CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    P. Marchi, The controversy between Leibniz and Bernoulli on the nature of the logarithms of negative numbers, In Akten das II Inter. Leibniz-Kongress (Hanover, 1972), Bnd II, 1974, pp. 67-75.Google Scholar
  38. 38.
    E. A. Maxwell, Fallacies in Mathematics, Cambridge Univ. Press, 1961.Google Scholar
  39. 39.
    K. Menger, What is dimension?, Amer. Math. Monthly 50 (1943) 2-7.CrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    K. G. Merryfield et al, The wallet paradox, Amer. Math. Monthly 104 (1997) 647-649.CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    G. H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence, Springer-Verlag, 1982.Google Scholar
  42. 42.
    E. Nagel, ‘Impossible numbers’: a chapter in the history of modern logic, Stud. in the Hist. of Ideas 3 (1935) 429-474.Google Scholar
  43. 43.
    P. J. Nahin, An Imaginary Tale: The Story of \(\sqrt{-1}\), Princeton Univ. Press, 1998.Google Scholar
  44. 44.
    R. Nelson, Pictures, probability, and paradox, Coll. Math. Jour. 10 (1979) 182-190.Google Scholar
  45. 45.
    E. P. Northrop, Riddles in Mathematics: A Book of Paradoxes, Van Nostrand, 1944.Google Scholar
  46. 46.
    Z. Pogoda and M. Sokolowski, Does mathematics distinguish certain dimenisons of space? Amer. Math. Monthly 104 (1997) 860-869.CrossRefMATHMathSciNetGoogle Scholar
  47. 47.
    A. Rapoport, Escape from paradox, Sc. Amer. 217 (July 1967) 50-56.CrossRefGoogle Scholar
  48. 48.
    R. Remmert, Theory of Complex Functions, Springer-Verlag, 1991.Google Scholar
  49. 49.
    D. Saari, a chaotic exploration of aggregation paradoxes, SIAM Review 37:1 (March 1995) 37-52.CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    R. P. Savage, The paradox of nontransitive dice, Amer. Math. Monthly 101 (1994) 429-436.CrossRefMATHMathSciNetGoogle Scholar
  51. 51.
    P. Scholten and A. Simoson, The falling ladder paradox, Coll. Math. Jour. 27 (1996) 49-54.CrossRefGoogle Scholar
  52. 52.
    L. A. Steen, New models of the real-number line, Scientific Amer. 225 (Aug. 1971) 92-99.CrossRefMathSciNetGoogle Scholar
  53. 53.
    G. Szekely and D. Richards, The St. Petersburg paradox and the crash of high-tech stocks in 2000, Amer. Statistician 58:3 (2004) 225-231.Google Scholar
  54. 54.
    H. Thurston, Can a graph be both continuous and discontinuous? Amer. Math. Monthly 96 (1989) 814-815.CrossRefMATHMathSciNetGoogle Scholar
  55. 55.
    B. L. Van der Waerden, Science Awakening I, Scholar’s Bookshelf, 1988 (orig. 1954).Google Scholar
  56. 56.
    N. Ya. Vilenkin, Stories About Sets, Academic Press, 1968.Google Scholar
  57. 57.
    K. Volkert, Zur Differentzierbarkeit stetiger Funktionen—Ampere’s Beweis und seine Folgen, Arch. Hist. Exact Sc. 40 (1989) 37-112.CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    K. Volkert, Die Geschichte der pathologischen Funktionen—Ein Beitrag zur Enstehung der mathematischen Methodologie, Arch. Hist. Exact Sc. 37 (1987) 193- 232.CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985.MATHGoogle Scholar
  60. 60.
    J. S. Walker, An elementary resolution of the liar paradox, Coll. Math. Jour. 35 (2004) 105-111.CrossRefGoogle Scholar
  61. 61.
    J. R. Weeks The twin paradox in a closed universe, Amer. Math. Monthly 108 (2001) 585-590.CrossRefMathSciNetGoogle Scholar
  62. 62.
    G. T. Whyburn, What is a curve?, Amer. Math. Monthly 49 (1942) 493-497.CrossRefMATHMathSciNetGoogle Scholar
  63. 63.
    F. Zames, Surface area and the cylinder area paradox, Coll. Math. Jour. 8 (1977) 207-211.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations