Advertisement

Highlights in the Practice of Proof: 1600 BC–2009

  • Israel Kleiner
Chapter

Abstract

The above observation, by G.F. Simmons, is sound pedagogical advice. It also reflects mathematical practice and its historical evolution. Standards of rigor have changed in mathematics, and not always from less rigor to more. Mathematicians’ views of what constitutes an acceptable proof have evolved. In this chapter, we will give examples pointing to that evolution. For further examples, see Chaps. 8 and 9.

Keywords

Nineteenth Century Axiomatic System Differential Calculus Mathematical Community Divergent Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Appel and W. Haken, The four-color problem. In Mathematics Today—Twelve Informal Essays, ed. by L. A. Steen, Springer-Verlag, 1978, pp. 153–190.Google Scholar
  2. 2.
    M. Aschbacher, The status of the classification of finite simple groups, Notices of the Amer. Math. Soc. 51 (2004) 736–740.MATHMathSciNetGoogle Scholar
  3. 3.
    D. Bailey, J. Borwein et al, Experimental Mathematics in Action, A K Peters, 2007.Google Scholar
  4. 4.
    E. Bishop, Foundations of Constructive Analysis, McGraw-Hill, 1967.Google Scholar
  5. 5.
    U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.Google Scholar
  6. 6.
    N. Bourbaki, The architecture of mathematics, Amer. Math. Monthly 57 (1950) 221–232.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    D. Bridges and F. Richman, Varieties of Constructive Mathematics, Cambridge Univ. Press, 1987.CrossRefMATHGoogle Scholar
  8. 8.
    A. Caldar, Constructive mathematics, Scientific Amer. 241 (October 1979) 146–171.CrossRefGoogle Scholar
  9. 9.
    E. J. Chaitin, Randomness and mathematical proof, Scientific Amer. 232 (May 1975) 47–52.CrossRefGoogle Scholar
  10. 10.
    C. T. Chong and Y. K. Leong, An interview with Jean-Pierre Serre, Math. Intell. 8:4 (1986) 8–13.CrossRefMathSciNetGoogle Scholar
  11. 11.
    B. A. Cipra, Computer search solves an old math problem, Science 242 (December 16, 1988) 1507–1508.Google Scholar
  12. 12.
    P. J. Davis, Fidelity in mathematical discourse: Is one and one really two?, Amer. Math. Monthly 79 (1972) 252–262.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    P. J. Davis and R. Hersh, The Mathematical Experience, Birkhäuser, 1981. (Revised Study Edition, with E. Marchisotto, published in 1995.)Google Scholar
  14. 14.
    R. Dedekind, Essays on the Theory of Numbers, Dover, 1963 (orig. 1901).Google Scholar
  15. 15.
    R. A. De Millo, R. J. Lipton, and A. J. Perlis, Social processes and proofs of theorems and programs, Communications of the ACM 22 (1979) 271–280.CrossRefGoogle Scholar
  16. 16.
    M. Detlefsen and M. Luker, The four-color theorem and mathematical proof, Jour. of Phil. 77 (1980) 803–820.CrossRefGoogle Scholar
  17. 17.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  18. 18.
    H. M. Edwards, Kronecker’s algorithmic mathematics, Math. Intell. 31:2 (2009) 11–14.CrossRefMATHGoogle Scholar
  19. 19.
    S. Engelsman, Families of Curves and the Origins of Partial Differentiation, North-Holland, 1984.Google Scholar
  20. 20.
    H. Eves, Great Moments in Mathematics, 2 vols. (before 1650, and after 1650, resp.), Math. Assoc. of America, 1983.Google Scholar
  21. 21.
    S. Feferman, What does logic have to tell us about mathematical proofs?, Math. Intell. 2:1 (1979) 20–24.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    C. G. Fraser, The calculus as algebraic analysis: some observations on mathematical analysis in the 18th century, Arch. Hist. Exact Sc. 39 (1989) 317–335.MATHMathSciNetGoogle Scholar
  23. 23.
    B. Gold and A. Simons (eds), Proof & Other Dilemmas: Mathematics and Philosophy, Math Assoc. of America, 2008.Google Scholar
  24. 24.
    N. Goodman, Mathematics as an objective science, Amer. Math. Monthly 86 (1979) 540–551.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    J. V. Grabiner, Who gave you the epsilon: Cauchy and the origins of rigorous calculus, Amer. Math. Monthly 90 (1983) 185–194.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    J. V. Grabiner, The changing concept of change: The derivative from Fermat to Weierstrass, Math. Mag. 56 (1983) 195–206.CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    J. V. Grabiner, Changing attitudes toward mathematical rigor: Lagrange and analysis in the 18th and 19th centuries. In Epistemological and Social Problems of the Sciences in the Early 19th Century, ed. by H. Jahnke and M. Otte, D. Reidel, 1981, pp. 311–330.Google Scholar
  28. 28.
    J. V. Grabiner, The Origins of Cauchy’s Rigorous Calculus, M.I.T. Press, 1981.MATHGoogle Scholar
  29. 29.
    J. V. Grabiner, Is mathematical truth time-dependent? Amer. Math. Monthly 81 (1974) 354–365.CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    J. Gray, Review of Uber die Enstehung von David Hilberts ‘Grundlagen der Geometrie’, Hist. Math. 15 (1988) 181–183.CrossRefGoogle Scholar
  31. 31.
    I. Hacking, Proof and eternal truths: Descartes and Leibniz. In Descartes: Philosophy, Mathematics and Physics, ed. by S. Gaukroger, Barnes and Noble Books, 1980, pp. 169–180.Google Scholar
  32. 32.
    W. Haken, An attempt to understand the four-color problem, Jour. Graph Theory 1 (1977) 193–206.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    T. Hales (ed.), Formal proof, Notices of the Amer. Math. Soc. 55 (2008) 1370–1380. (This is part of a Special Issue on Formal Proof, Vol. 55, no. 11, 2008, with articles by Hales, Gonthier, Harrison, and Wiedijk.)Google Scholar
  34. 34.
    T. Hales, A proof of the Kepler comjecture, Annals of Mathematics 162 (2005) 1065–1185.CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    T. Hales, The Flyspeck Project, http://code.google.com/p/flyspeck/
  36. 36.
    G. Hanna, Rigorous Proof in Mathematics Education, Ontario Institute for Studies in Education Press, 1983.Google Scholar
  37. 37.
    V. Hendricks et al (eds), Proof Theory: Historical and Philosophical Significance, Kluwer, 2000.Google Scholar
  38. 38.
    R. Hersh, What is Mathematics, Really?, Oxford Univ. Press, 1997.Google Scholar
  39. 39.
    V. J. Katz, A History of Mathematics: An Introduction, 3rd. ed., Addison-Wesley, 2009.Google Scholar
  40. 40.
    P. Kitcher, The Nature of Mathematical Knowledge, Oxford Univ. Press, 1983.MATHGoogle Scholar
  41. 41.
    I. Kleiner, A History of Abstract Algebra, Birkhäuser, 2007.Google Scholar
  42. 42.
    M. Kline, Mathematics: The Loss of Certainty, Oxford Univ. Press, 1980.Google Scholar
  43. 43.
    M. Kline, Mathematical Thought from Ancient to Modem Times, Oxford Univ. Press, 1972.Google Scholar
  44. 44.
    W. R. Knorr, On the early history of axiomatics: The interaction of mathematics and philosophy in Greek antiquity. In Theory Change, Ancient Axiomatics and Galileo’s Methodology, ed. by J. Hintikka et al, D. Reidel, 1980, pp. 145–186.Google Scholar
  45. 45.
    G. Kolata, Prime tests and keeping proofs secret, Science 233 (Aug. 1986) 938–939.CrossRefMathSciNetGoogle Scholar
  46. 46.
    G. Kolata, Mathematical proofs: The genesis of reasonable doubt, Science 192 (June 1976) 989–990.CrossRefGoogle Scholar
  47. 47.
    I. Lakatos, A renaissance of empiricism in the recent philosophy of mathematics? In New Directions in the Philosophy of Mathematics, ed. by T. Tymoczko, Birkhäuser, 1986, pp. 29–48.Google Scholar
  48. 48.
    I. Lakatos, What does a mathematical proof prove? In New Directions in the Philosophy of Mathematics, ed. by T. Tymoczko, Birkhäuser, 1986, pp. 153–162.Google Scholar
  49. 49.
    I. Lakatos, Cauchy and the continuum: The significance of non-standard analysis for the history and philosophy of mathematics, Math. Intell. 1:3 (1978) 151–161.CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    I. Lakatos, Proofs and Refutations, Cambridge Univ. Press, 1976.MATHGoogle Scholar
  51. 51.
    D. Laugwitz, Infinitely small quantities in Cauchy’s textbooks, Hist. Math. 14 (1987) 258–274.CrossRefMATHMathSciNetGoogle Scholar
  52. 52.
    G. E. R. Lloyd, Magic, Reason and Experience: Studies in the Origin and Development of Greek Science, Cambridge Univ. Press, 1979.Google Scholar
  53. 53.
    P. Mancosu, On mathematical explanation. In The Growth of Mathematical Knowledge, ed. by E. Grosholz and H. Breger, Kluwer, 2000, pp. 103–119.Google Scholar
  54. 54.
    M. Mandelkern, Constructive mathematics, Math. Mag.58 (1985) 272–280.Google Scholar
  55. 55.
    Yu. I. Manin, How convincing is a proof? Math. Intell. 2:1 (1979) 17–18.CrossRefMathSciNetGoogle Scholar
  56. 56.
    A. R. Meyer, The inherent computational complexity of theories of ordered sets. In Proc. Int. Congr. of Mathematicians, Vancouver, 1974, pp. 477–482.Google Scholar
  57. 57.
    F. H. Norwood, Long proofs, Amer. Math. Monthly 89 (1982) 110–112.CrossRefMATHMathSciNetGoogle Scholar
  58. 58.
    C. Pomerance, Recent developments in primality testing, Math. Intell. 3:3 (1981) 97–105.CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    M. O. Rabin, Probabilistic algorithms. In Algorithms and Complexity: New Directions and Recent Results, ed. by J. F. Traub, Academic Press, 1976, pp. 21–40.Google Scholar
  60. 60.
    F. Richman, Existence proofs, Amer. Math. Monthly 106 (1999) 303–308.CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    E. Robson, Mathematics in Ancient Iraq: A Social History, Princeton Univ. Press, 2008.MATHGoogle Scholar
  62. 62.
    G. – C. Rota, The phenomenology of mathematical proof, Synthese 111 (1997) 183–196.Google Scholar
  63. 63.
    G. F. Simmons, Differential Equations, McGraw-Hill, 1972.Google Scholar
  64. 64.
    S. Smale, Algebra and complexity theory, Bull. Amer. Math. Soc. 4 (1981) 1–36.CrossRefMATHMathSciNetGoogle Scholar
  65. 65.
    J. Spencer, Short theorems with long proofs, Amer. Math. Monthly 90 (1983) 365–366.CrossRefMathSciNetGoogle Scholar
  66. 66.
    L. A. Steen, Living with a new mathematical species, Math. Intell. 8:2 (1986) 33–40.CrossRefMATHMathSciNetGoogle Scholar
  67. 66a.
    J. Stillwell, Roads to Infinity: The Mathematics of Truth and Proof, A K Peters, 2010.Google Scholar
  68. 67.
    L. J. Stockmeyer and A. K. Chandra, Intrinsically difficult problems, Scientific Amer. 240 (May 1979) 140–159.CrossRefGoogle Scholar
  69. 68.
    D. J. Struik, A Source Book in Mathematics, 1200–1800, Harvard Univ. Press, 1969.Google Scholar
  70. 69.
    E. R. Swart, The philosophical implications of the four-color problem, Amer. Math. Monthly 87 (1980) 697–707.CrossRefMATHMathSciNetGoogle Scholar
  71. 70.
    A. Szabo, The Beginnings of Greek Mathematics, D. Reidel, 1978.Google Scholar
  72. 71.
    A. Tarski, Truth and proof, Scientific Amer. 220 (June 1969) 63–77.CrossRefGoogle Scholar
  73. 72.
    The Two-Year College Mathematics Journal 12:2 (March 1981). This issue features the concept of proof. It includes articles by Appel and Haken, Galda, Renz, and Tymoczko.Google Scholar
  74. 73.
    T. Tymoczko, Making room for mathematicians in the philosophy of mathematics, Math. Intell. 8:3 (1986) 44–50.CrossRefMathSciNetGoogle Scholar
  75. 74.
    T. Tymoczko, Computers, proofs and mathematicians: a philosophical investigation of the four-color proof, Math. Mag.53 (1980) 131–138.Google Scholar
  76. 75.
    T. Tymoczko, The four-color problem and its philosophical significance, Jour. of Phil. 76:2 (1979) 57–83.CrossRefGoogle Scholar
  77. 76.
    B. L. Van der Waerden, Science Awakening, Noordhoff, 1954.Google Scholar
  78. 77.
    J. Von Neumann, The role of mathematics in the sciences and in society. In Collected Works, Vol. 6, ed. by A. H. Taub, Macmillan, 1963, pp. 477–490.Google Scholar
  79. 78.
    J. Von Neumann, The mathematician. In The World of Mathematics, Vol. 4, ed. by J. R. Newman, Simon and Schuster, 1956, pp. 2053–2063.Google Scholar
  80. 79.
    H. Weyl, Axiomatic versus constructive procedures in mathematics, Math. Intell. 7:4 (1985) 10–17.CrossRefMathSciNetGoogle Scholar
  81. 80.
    H. Weyl, Mathematics and logic, Amer. Math. Monthly 53 (1946) 2–13.CrossRefMATHMathSciNetGoogle Scholar
  82. 81.
    R. Wilder, Evolution of Mathematical Concepts, John Wiley and Sons, 1968.Google Scholar
  83. 82.
    R. L. Wilder, The role of the axiomatic method, Amer. Math. Monthly 74 (1967) 115–127.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations