Advertisement

More on the History of Functions, with Remarks on Teaching

  • Israel Kleiner
Chapter

Abstract

The notion of function is central in both mathematics and mathematics education. Textbook definitions or descriptions of function have varied with time, context, and level of presentation. A function has been viewed as a formula, a rule, a correspondence, a relation between variables, a table of values, a graph, a mapping, a transformation, an operation, a set of ordered pairs (see, e.g., Math Teacher 61:575–579, 1968; Int Jour Math Educ Sci Technol 11:489–492, 1980; Learn Math 62(2):18–24, 28, 1986). These ideas reflect the historical evolution of the function concept. We will briefly trace some aspects of this evolutionary process, and following the historical account in each section (except for the first and last), draw some pedagogical morals.

Keywords

Nineteenth Century Power Series Fourier Series Eighteenth Century Function Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Beckmann, A History of π, St. Martin’s Press, 1971.Google Scholar
  2. 2.
    C. B. Boyer, The foremost textbook of modern times, Amer. Math. Monthly 58 (1951) 223-226.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    C. B. Boyer, Proportion, equation, function: three steps in the development of a concept, Scripta Math. 12 (1946) 5-13.MATHMathSciNetGoogle Scholar
  4. 4.
    C. B. Boyer, Historical stages in the definition of curves, National Math. Mag. 19 (1945) 294-310.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    R. C. Buck, Functions, in E. Begle (ed.), Mathematics Education, Yearbook of the Nat. Soc. Stud. Educ., Vol. 69, 1970, pp. 236-259.Google Scholar
  6. 6.
    F. Cajori, A History of Mathematical Notations, Vol. 2, Open Court Publ., 1929.Google Scholar
  7. 6a.
    F. Cajori, History of exponential and logarithmic concepts, Amer. Math. Monthly 20 (1913) 5-14, 35-47, 75-84, 107-117, 148-151, 173-182, 205-210.Google Scholar
  8. 7.
    A.–L. Cauchy, Cours d’Analyse, translated into English, with annotations, by R. Bradley and E. Sandifer, Springer, 2009 (orig. 1821).Google Scholar
  9. 8.
    R. B. Deal, Some remarks on “A dilemma in definition,” Amer. Math. Monthly 74 (1967) 1258-1259.CrossRefMathSciNetGoogle Scholar
  10. 9.
    T. Dreyfus and T. Eisenberg, Intuitive functional concepts: a baseline study on intuitions, Jour. Res. Math. Educ. 13 (1982) 360-380.CrossRefGoogle Scholar
  11. 10.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  12. 11.
    L. Euler, Introductio in Analysin Infinitorum, Vols. 1 & 2, translated into English by J. Blanton, Springer, 1989 (orig. 1748).Google Scholar
  13. 12.
    G. Ferraro and M. Panza, Developing into series and returning from series: a note on the foundations of eighteenth-centuiry analysis, Hist. Math. 30 (2003) 17-46.CrossRefMATHMathSciNetGoogle Scholar
  14. 13.
    A. Gardiner, Infinite Processes: Background to Analysis, Springer-Verlag, 1982.Google Scholar
  15. 14.
    D. W. Hight, Functions: dependent variables to pickle pickers, Math. Teacher 61 (1968) 575-579.Google Scholar
  16. 15.
    M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, 1972.MATHGoogle Scholar
  17. 16.
    M. Kronfellner, Ein genetischer Zugang zum Funktionsbegriff, Math. Didactica 10(1987) 81-100.Google Scholar
  18. 17.
    R. E. Langer, Functions. In Insights into Modern Mathematics, 23rd Yearbook of the NCTM, National Council of Teachers of Mathematics, 1957, pp. 241-272.Google Scholar
  19. 18.
    N. Luzin, Function, Parts I and II, Amer. Math. Monthly 105 (1998) 59-67 (Part I) and 263-270 (Part II).Google Scholar
  20. 19.
    M. A. Malik, Historical and pedagogical aspects of the definition of function, Int. Jour. Math. Educ. Sci. Technol. 11 (1980) 489-492.CrossRefMATHMathSciNetGoogle Scholar
  21. 20.
    B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1977.Google Scholar
  22. 21.
    J. H. Manheim, The Genesis of Point-Set Topology, Macmillan, 1964.Google Scholar
  23. 22.
    Z. Markovits, B. – S. Eylon, and M. Bruckheimer, Functions today and yesterday, For the Learning of Mathematics 62 (2) (1986) 18-24, 28.Google Scholar
  24. 23.
    D. G. Mead, Integration, Amer. Math. Monthly 68 (1961) 152-156.CrossRefMathSciNetGoogle Scholar
  25. 24.
    National Council of Teachers of Mathematics, Historical Topics for the Mathematics Classroom, National Council of Teachers of Mathematics, 1969.Google Scholar
  26. 25.
    C. P. Nicholas, A dilemma in definition, Amer. Math. Monthly 73 (1966) 762-768.CrossRefMathSciNetGoogle Scholar
  27. 26.
    I. Niven, Irrational Numbers, Math. Assoc. of America, 1956.Google Scholar
  28. 27.
    D. Rüthing, Some definitions of the concept of function from Joh. Bernoulli to N. Bourbaki, Math. Intell. 6 (4) (1984) 72-77.Google Scholar
  29. 28.
    G. F. Simmons, Calculus with Analytic Geometry, McGraw-Hill, 1985.Google Scholar
  30. 29.
    G. F. Simmons, Differential Equations, with Applications and Historical Notes, McGraw-Hill, 1972.Google Scholar
  31. 30.
    D. G. Tahta, A startling discovery, Math. Teaching 45 (1968) 33-37.Google Scholar
  32. 31.
    D. Tall and S. Vinner, Concept images and concept definition in mathematics with particular reference to limits and continuity, Educ. Stud. Math. 12 (1981) 151-169.CrossRefGoogle Scholar
  33. 32.
    H. A. Thurston, A reply to “A dilemma in definition”, Amer. Math. Monthly 74 (1967) 1259-1261.CrossRefMathSciNetGoogle Scholar
  34. 33.
    G. Van Brummelen, The Mathematics of the Heaavens and the Earth: The Early History of Trigonometry, Princeton Univ. Press, 2008.Google Scholar
  35. 34.
    E. B. Van Vleck, The influence of Fourier’s series upon the development of mathematics, Science 39 (1914) 113-124.CrossRefGoogle Scholar
  36. 35.
    A. P. Youschkevitch, The concept of function up to the middle of the 19th century, Arch. Hist. Exact Sci. 16 (1976) 37-85.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations