Advertisement

The Biographies

  • Israel Kleiner
Chapter

Abstract

The nineteenth century was a golden age in mathematics. Entirely new subjects emerged – for example, abstract algebra, non-Euclidean geometry, set theory, and complex analysis; and old ones were radically transformed – for example, real analysis, and number theory. Just as important, the spirit of mathematics, the way of thinking about it and doing it, changed fundamentally, even if gradually.

Keywords

Number Theory Eighteenth Century Algebraic Number Abstract Algebra Abelian Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

References

  1. 1.
    I. G. Bashmakova and A. N. Rudakov, Algebra and algebraic number theory. In Mathematics of the 19th Century, ed. by A. N. Kolmogorov and A. P. Yushkevich, Birkhäuser, 2001, pp. 35–135. (Translated from the Russian by A. Shenitzer, H. Grant, and O. B. Sheinin.)Google Scholar
  2. 2.
    E. T. Bell, Men of Mathematics, Simon and Schuster, 1937.Google Scholar
  3. 3.
    K. S. Biermann, Dedekind, Richard. In Dictionary of Scientific Biography, ed. by C. C. Gillispie, Charles Scribner’s Sons, Vol. 4, 1981, pp. 1–5.Google Scholar
  4. 4.
    U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.Google Scholar
  5. 5.
    L. Corry, Modern Algebra and the Rise of Mathematical Structures, Birkhäuser, 1996.Google Scholar
  6. 6.
    R. Dedekind, Theory of Algebraic Integers, translated and introduced by John Stillwell, Cambridge University Press, 1996.Google Scholar
  7. 7.
    R. Dedekind, Letter to Keferstein. In From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Harvard Univ. Press, 1977, pp. 98–103.Google Scholar
  8. 8.
    R. Dedekkind, Essays on the Theory of Numbers, Dover, 1963. (The book consists of the two essays: Continuity and Irrational Numbers and The Nature and Meaning of Numbers.)Google Scholar
  9. 9.
    J. Dieudonné (ed.), Abrégé d’histoire des mathtématiques, 1700–1900, Vol. 1, Hermann, 1978.Google Scholar
  10. 10.
    H. M. Edwards, Mathematical ideas, ideals, and ideology, Mathematical Intelligencer 14:2 (1992) 6–19.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    H. M. Edwards, Dedekind’s invention of ideals, Bull. London Math. Soc. 15 (1983) 8–17.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    W. Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Vol II, Oxford University Press, 1996, pp. 753–837.Google Scholar
  13. 13.
    J. Ferreiros, Traditional logic and early history of sets, Arch. for Hist. of the Exact Sci. 50 (1996/97) 5–71.Google Scholar
  14. 14.
    J. Gray, Plato’s Ghost: The Modernist Transformation of Mathematics, Princeton Univ. Press, 2008.MATHGoogle Scholar
  15. 15.
    I. Kleiner, A History of Abstract Algebra, Birkhäuser, 2007.Google Scholar
  16. 16.
    D. Laugwitz, Bernhard Riemann, 1826–1866, Birkhäuser, 1999. (Translated from the German by A. Shenitzer.)Google Scholar
  17. 17.
    H. Stein, Logos, logic and Logistiké. In History and Philosophy of Modern Mahematics, ed. by W. Aspray and P. Kitcher, Univ. Minnesota Press, 1988.Google Scholar

References

  1. 1.
    T. M. Apostol, Introduction toAnalytic Number Theory, Springer-Verlag, 1976.Google Scholar
  2. 2.
    E. T. Bell, Men of Mathematics, Simon and Schuster, 1937.Google Scholar
  3. 3.
    U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.Google Scholar
  4. 4.
    R. E. Bradley and C. E. Sandifer (eds.), Leonhard Euler: Life, Work, and Legacy, Elsevier, 2007.Google Scholar
  5. 5.
    W. Dunham (ed.), The Genius of Euler: Reflections on his Life and Work, Math. Assoc. of Amer., 2007.Google Scholar
  6. 6.
    W. Dunham, The Calculus Gallery: Masterpieces from Newton to Lebesgue, Princeton Univ. Press, 2005.MATHGoogle Scholar
  7. 7.
    W. Dunham, Euler, the Master of Us All, Math. Assoc. of Amer., 1999.Google Scholar
  8. 8.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  9. 9.
    H. M. Edwards, Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, 1977.Google Scholar
  10. 10.
    J. R. Goldman, The Queen of Mathematics: A Historically Motivated Guide to Number Theory, A K Peters, 1998.Google Scholar
  11. 11.
    I. Grattan-Guinness, The Development of the Foundations of Mathematical Analysis from Euler toRiemann, M.I.T. Press, 1970.Google Scholar
  12. 12.
    C. E. Sandifer, The Early Mathematics of Leonhard Euler, Math. Assoc. of Amer., 2007.Google Scholar
  13. 13.
    C. E. Sandifer, How Euler Did It, Math. Assoc. of Amer., 2007.Google Scholar
  14. 14.
    J. Stillwell, Elements of Number Theory, Springer-Verlag, 2003.Google Scholar
  15. 15.
    D. J. Struik, A Concise History of Mathematics, 4th rev. ed., Dover, 1987.Google Scholar
  16. 16.
    A. Weil, Number Theory: An Approach through History, from Hammurapi to Legendre, Birkhäuser, 1984.Google Scholar
  17. 17.
    A. P. Youschkevitch, Euler, Leonhard. In Dictionary of Scientific Biography, ed. by C. C. Gillispie, Charles Scribner’s Sons, 1981, Vol. 4, pp. 467–484.Google Scholar

References

  1. 1.
    E. T. Bell, Men of Mathematics, Simon and Schuster, 1937.Google Scholar
  2. 2.
    W. K. Bühler, Gauss: A Biographical Study, Springer-Verlag, 1981.Google Scholar
  3. 3.
    G. W. Dunnington, Carl Friedrich Gauss: Titan of Science, Hafner Publ., 1955.Google Scholar
  4. 4.
    W. Ewald (compiler), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Oxford Univ. Press, 1996.Google Scholar
  5. 5.
    C. F. Gauss, Disquisitiones Arithmeticae, translated by A.A. Clark, Springer-Verlag, 1986.Google Scholar
  6. 6.
    J. J. Gray, A commentary on Gauss’ mathematical diary, 1796–1814, with an English translation, Expositiones Mathematicae 2 (1984) 97–130.MATHMathSciNetGoogle Scholar
  7. 7.
    T. Hall, Carl Friedrich Gauss: A Biography, M.I.T. Press, 1970.MATHGoogle Scholar
  8. 8.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982.Google Scholar
  9. 9.
    I. James, Remarkable Mathematicians: From Euler to Von Neumann, Math. Assoc. of America, 2002.Google Scholar
  10. 10.
    I. Kleiner, A History of Abstract Algebra, Birkhäuser, 2007.Google Scholar
  11. 11.
    K. O. May, Gauss, Carl Friedrich. In Dictionary of Scientific Biography, edited by C. C. Gillispie, Charles Scribner’s Sons, 1981, Vol. 5, pp. 298–315.Google Scholar
  12. 12.
    G. M. Rassias (ed.), The Mathematical Heritage of C. F. Gauss, World Scientific, 1991.Google Scholar
  13. 13.
    I. Stewart, Gauss, Scientific Amer. 237 (July 1977) 122–131.CrossRefGoogle Scholar

References

  1. 1.
    L. Corry, David Hilbert and the axiomatization of physics, Arch. Hist. Exact Sciences 51 (1997) 83–198.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    D. A. Cox, Galois Theory, John Wiley and Sons, 2004.Google Scholar
  3. 3.
    H. Freudenthal, Hilbert, David. In Dictionary of Scientific Biography, ed. by C. C. Gillispie, Charles Scribner’s Sons, 1981, Vol. 6, pp. 388–395.Google Scholar
  4. 4.
    J. Gray, The Hilbert Challenge, Oxford Univ. Press, 2000.MATHGoogle Scholar
  5. 5.
    D. Hilbert, Foundations of Geometry, Open Court, 1902.Google Scholar
  6. 6.
    D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902) 437–479.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    I. James, Remarkable Mathematicians, Math. Assoc. of Amer., 2002.Google Scholar
  8. 8.
    M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, 1972.MATHGoogle Scholar
  9. 9.
    C. Reid, Hilbert, Springer-Verlag, 1970.Google Scholar
  10. 10.
    M. Toepell, On the origins of David Hilbert’s “Grundlagen der Goemtrie,” Arch. Hist. Exact Sciences 35 (1986) 329–344.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    H. Weyl, David Hilbert and his mathematical work, Bull. Amer. Math. Soc. 50 (1944) 612–654.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    B. Yandell, The Honors Class, A K Peters, 2002.Google Scholar

References

  1. 1.
    E. T. Bell, Men of Mathematics, Simon and Schuster, 1937.Google Scholar
  2. 2.
    K.- R. Biermann, Weierstrass, Karl Theodor Wilhelm. In Dictionary of Scientific Biography, ed. by C. C. Gillispie, Scribner’s, 1970–1980, Vol 14, pp. 219–224.Google Scholar
  3. 3.
    U. Bottazzini, “Algebraic truths” vs “geometric fantasies”: Weierstrass’ response to Riemann, Proceedings of the Intern. Congr. of Mathematicians, Beijing, 2002, Vol. III, pp. 923–934.Google Scholar
  4. 4.
    U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.Google Scholar
  5. 5.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  6. 6.
    B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in Analysis, Holden-Day, 1964.Google Scholar
  7. 7.
    J. W. Grabiner, The Origins of Cauchy’s Rigorous Calculus, MIT Press, 1981.Google Scholar
  8. 8.
    T. Hawkins, The Emergence of the Theory of Lie Groups: An Essay in the History of Mathematics, 1869–1926, Springer-Verlag, 2000.Google Scholar
  9. 9.
    T. Hawkins, Weierstrass and the theory of matrices, Arch. Hist. Exact Sciences 17 (1977) 119–163.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    I. James, Remarkable Mathematicians, From Euler to Von Neumann, Math. Assoc. of Amer., 2002.Google Scholar
  11. 11.
    P. Kitcher, The Nature of Mathematical Knowledge, Oxford Univ. Press, 1983.MATHGoogle Scholar
  12. 12.
    M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, 1972.MATHGoogle Scholar
  13. 13.
    S. Klymchuk, Counterexamples in Calculus, Math. Assoc. of Amer., 2010.Google Scholar
  14. 14.
    S. Landau, The myth of the young mathematician, Notices of the Amer. Math. Soc. 44 (1997) 1284.Google Scholar
  15. 15.
    E. Neuenschwander, Studies in the history of complex function theory II: Interactions among the French School, Riemann, and Weierstrass, Bulletin of the Amer. Math. Soc. 5 (1981) 87–105.CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    J. Stillwell, Mathematics and its History, 2nd ed., Springer-Verlag, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations