A History-of-Mathematics Course for Teachers, Based on Great Quotations

  • Israel Kleiner


Courses in the history of mathematics have been proposed based on great theorems and great problems (Journey Through Genius: The Great Theorems of Mathematics, 1990; Learn Math 6(1):31–38, 1986; Am Math Mon 99:313–317, 1992). Here we outline a course in the history of mathematics with “great” quotations as points of departure. These three “greats” have in common a number of important pedagogical features: they are interesting, they arouse curiosity, and they display, or lead to, important aspects of the mathematical enterprise. Moreover, the quotations (like the theorems and the problems) cajole, exasperate, stimulate, motivate, seduce, amuse – all welcome didactic traits. Perhaps more importantly, they are guideposts around which one may structure the development of a concept, a result, or a theory.


Mathematical Discovery Foundational Issue Finite Projective Plane Great Theorem Kepler Conjecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Atiyah, Mathematics: art and science, Bull. Amer. Math. Soc. 43 (2005) 87-88.CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. Bailey, J. Borwein et al, Experimental Mathematics in Action, A K Peters, 2007.Google Scholar
  3. 3.
    E. T. Bell, Mathematics: Queen and Servant of Science, G. Bell & Sons, 1952.Google Scholar
  4. 4.
    E. T. Bell, The Development of Mathematics, 2nd ed., McGraw-Hill, 1945.Google Scholar
  5. 5.
    E. T. Bell, Men of Mathematics, Simon and Schuster, 1937.Google Scholar
  6. 6.
    W. P. Berlinghoff and F. Q. Gouvea, Math Through the Ages: A Gentle History for Teachers and Others, expanded ed., Math. Assoc. of Amer., 2004.Google Scholar
  7. 7.
    L. Blumenthal, A Modem View of Geometry, W.H. Freeman & Co., 1961.Google Scholar
  8. 8.
    G. Boole, An Investigation of the Laws of Thought, Dover, 1951 (orig. 1854).Google Scholar
  9. 9.
    A. Borel, Mathematics: art and science, Math. Intelligencer 5:4 (1983) 9-17.CrossRefMathSciNetGoogle Scholar
  10. 10.
    P. Cohen and R. Hersh, Non-Cantorian set theory, Scientific Amer. 217 (Dec. 1967) 104-116.CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Crowe, A History of Vector Analysis, Univ. of Notre Dame Press, 1967.Google Scholar
  12. 12.
    P. J. Davis and R. Hersh, The Mathematical Experience, Birkhäuser, 1981.Google Scholar
  13. 13.
    F. De Sua, Consistency and completeness: a resumé, Amer. Math. Monthly 63(1956) 295-305.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    J. Dieudonné, Should we teach modem mathematics? Amer. Scientist 61 (Jan./Feb. 1973) 16-19.Google Scholar
  15. 15.
    W. Dunham, Journey Through Genius: The Great Theorems of Mathematics, Wiley, 1990.Google Scholar
  16. 16.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  17. 17.
    A. Einstein, Ideas and Opinions, Crown Publ., 1954.Google Scholar
  18. 18.
    H. Eves, Great Moments in Mathematics (After 1650), Math. Assoc. of Amer., 1981.Google Scholar
  19. 19.
    Galileo Galilei, Dialogues Concerning the Two Chief World Systems, tr. by S. Drake, 2nd ed., Univ. of California Press, 1970.Google Scholar
  20. 20.
    Galileo Galilei, Two New Sciences, tr. by H. Crew and A. de Salvio, Dover, 1954.Google Scholar
  21. 21.
    J. Gallian, Contemporary Abstract Algebra, 2nd ed., D.C. Heath & Co., 1990.Google Scholar
  22. 22.
    N. Goodman, Mathematics as an objective science, Amer. Math. Monthly 86 (1979) 540-551.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    M. J. Greenberg, Euclidean and Non-Euclidean Geometries: Development and History, 2nd ed., W.H. Freeman & Co., 1980.Google Scholar
  24. 24.
    P. Halmos, Naive Set Theory, Springer-Verlag, 1960.Google Scholar
  25. 25.
    R. Hersh, What is Mathematics, Really?, Oxford Univ. Press, 1997.Google Scholar
  26. 26.
    D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea, 1952.Google Scholar
  27. 27.
    I. Kant, Critique of Pure Reason, transl. by M. Müller, 2nd ed., Macmillan,1927.Google Scholar
  28. 28.
    V. J. Katz, A History of Mathematics: An Introduction, 3rd ed., Addison-Wesley, 2009.Google Scholar
  29. 29.
    I. Kleiner, Famous problems in mathematics: an outline of a course, For the Learning of Mathematics 6:1 (1986) 31-38.MathSciNetGoogle Scholar
  30. 30.
    M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, 1972.MATHGoogle Scholar
  31. 31.
    M. Kline, Mathematics in Western Culture, Oxford Univ. Press, 1953.MATHGoogle Scholar
  32. 32.
    I. Lakatos, Proofs and Refutations, Cambridge Univ. Press, 1976.MATHGoogle Scholar
  33. 33.
    R. Laubenbacher and D. Pengelley, Great problems of mathematics: a course based on original sources, Amer. Math. Monthly 99 (1992) 313-317.CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    B. Mandelbrot, Fractals: Form, Chance, and Dimension, W.H. Freeman & Co., 1977.Google Scholar
  35. 35.
    E. Maor, To Infinity and Beyond, Birkhäuser, 1987.Google Scholar
  36. 36.
    H. Meschkowski, Noneuclidean Geometry, Academic Press, 1964.Google Scholar
  37. 37.
    B. Peirce, Linear associative algebras, Amer. Jour. Math. 4 (1881) 97-215.CrossRefMathSciNetGoogle Scholar
  38. 38.
    H. Poincaré, Science and Hypothesis, Dover, 1952.Google Scholar
  39. 39.
    G. Polya, Mathematical Methods in Science, Math. Assoc. of Amer., 1977.Google Scholar
  40. 40.
    R. Remmert, Theory of Complex Functions, Springer-Verlag, 1989.Google Scholar
  41. 41.
    G. – C. Rota, The phenomenology of mathematical beauty, Synthese 111 (1997) 171-182.Google Scholar
  42. 42.
    R. Rucker, Infinity and the Mind, Birkhäuser, 1982.Google Scholar
  43. 43.
    M. M. Schiffer and L. Bowden, The Role of Mathematics in Science, Math. Assoc. of Amer., 1984.Google Scholar
  44. 44.
    A. Seidenberg, The origin of mathematics, Arch. Hist. Exact Sci. 18 (1978) 301-342.MATHMathSciNetGoogle Scholar
  45. 45.
    L. Steen, Living with a new mathematical species, Math. Intelligencer 8:2 (1986) 33-40.CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    J. Stillwell, Mathematics and Its History, Springer-Verlag, 1989.Google Scholar
  47. 46a.
    J. Stillwell, Roads to Infinity: The Mathematics of Truth and Proof, A K Peters, 2010.Google Scholar
  48. 47.
    D. Struik, A Concise History of Mathematics, 4th rev. ed., Dover, 1987.Google Scholar
  49. 48.
    O. Toeplitz, The Calculus: A Genetic Approach, Univ. of Chicago Press, 1963.Google Scholar
  50. 49.
    T. Tymoczko, New Directions in the Philosophy of Mathematics, Birkhäuser, 1986.Google Scholar
  51. 50.
    S. Wagon, The Banach-Tarski Paradox, Cambridge Univ. Press, 1985.MATHGoogle Scholar
  52. 51.
    H. Weyl, Axiomatic versus constructive procedures in mathematics, Math. Intelligencer 7:4 (1985) 10-17.CrossRefMathSciNetGoogle Scholar
  53. 52.
    H. Weyl, A half-century of mathematics, Amer. Math. Monthly 58 (1951) 523-553.CrossRefMATHMathSciNetGoogle Scholar
  54. 53.
    A. N. Whitehead, A Treatise on Universal Algebra, Hafiier, 1960.Google Scholar
  55. 54.
    R. Wilder, Evolution of Mathematical Concepts:An Elementary Study, John Wiley & Sons, 1968.Google Scholar
  56. 55.
    H. Wolfe, Introduction to Non-Euclidean Geometry, Holt, Rinehart & Winston, 1945.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations