Proof: A Many-Splendored Thing

  • Israel Kleiner


In a 1993 article, Jaffe and Quinn, concerned that “today in certain areas there is again a trend toward basing mathematics on intuitive reasoning without proof” (Bull Am Math Soc 29:1–13, 1993), have suggested a framework for dealing with the issue which includes attaching labels to “speculative and intuitive” work. The article has engendered a fascinating debate within the mathematical community about the nature and function of proof in mathematics and, inevitably, about the nature of the mathematical enterprise, for it is sometimes (often?) difficult to isolate “proving” from the general fabric of doing mathematics.


Nineteenth Century Eighteenth Century Seventeenth Century Projective Geometry Mathematical Practice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Abdulle and G. Wanner, 200 years of least squares method, Elemente der Mathematik 57:2 (2002) 45–60.CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    L. V. Ahlfors, Development of the theory of conformal mapping and Riemann surfaces through a century, Annals of Math. Studies 30 (1953) 3–13.MATHMathSciNetGoogle Scholar
  3. 3.
    D. Alexander, Dirty math, MAA Focus (March 2002) 6–7.Google Scholar
  4. 4.
    D. S. Alexander, Gaston Darboux and the history of complex dynamics, Hist. Math. 22 (1995) 179–185.CrossRefMATHGoogle Scholar
  5. 5.
    G. E. Andrews, The death of proof? Semi-rigorous mathematics? You’ve got to be kidding!, Math. Intelligencer 16:4 (1994) 16–18.MATHMathSciNetGoogle Scholar
  6. 6.
    K. Appel and W. Haken, The four-color problem. In Mathematics Today, ed. by L. Steen, Springer-Verlag, 1978, pp.151–180.Google Scholar
  7. 7.
    V. I. Arnold, Will mathematics survive? Report on the Zurich Congress, Math. Intelligencer 17:3 (1995) 6–10.CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    M. Aschbacher, The status of the classification of the finite simple groups, Notices of the Amer. Math. Soc. 51 (2004) 736–740.MATHMathSciNetGoogle Scholar
  9. 9.
    M. Atiyah et al., Responses to ‘Theoretical mathematics: Toward a cultural synthesis of mathematics and theoretical physics,’ by A. Jaffe and F. Quinn, Bulletinof the Amer. Math. Soc. 30 (1994) 178–211.Google Scholar
  10. 10.
    L. Babai, Probably true theorems, cry wolf?, Noticesof the Amer. Math. Soc. 41 (1994) 453–454.Google Scholar
  11. 11.
    L. Babai, Transparent proofs, MAAFocus 12:3 (1992) 1–2.Google Scholar
  12. 12.
    E. J. Barbeau and P. J. Leah, Euler’s 1760 paper on divergent series, Hist. Math. 3 (1976) 141–160.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    B. E. Blank, Book Review: The Universal Computer: The Road from Leibniz to Turing, by M. Davis, Norton, 2000. In Notices of the Amer. Math. Soc. 48 (2001) 498–501.Google Scholar
  14. 14.
    U. Bottazzini and R. Tazzioli, Naturalphilosophie and its role in Riemann’s mathematics, Rev. d’Hist. Math. 1 (1995) 3–38.MATHMathSciNetGoogle Scholar
  15. 15.
    U. Bottazzini, The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, 1986.Google Scholar
  16. 16.
    C. B. Boyer, Analysis: Notes on the evolution of a subject and a name, Math. Teacher 47 (1954) 450–462.Google Scholar
  17. 17.
    G. J. Chaitin, Thoughts on the Riemann Hypothesis, Math. Intelligencer 26:1 (2004) 4–7.CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    C. T. Chong and Y. K. Leong, An interview with Jean-Pierre Serre, Math. Intelligencer 8:4 (1986) 8–13.CrossRefMathSciNetGoogle Scholar
  19. 19.
    B. Cipra, At math meetings, Enormous Theorem eclipses Fermat, Science 267 (10 Febr. 1995) 794–795.Google Scholar
  20. 20.
    B. Cipra, New computer insights from ‘transparent’ proofs. In What’s Happening in the Mathematical Sciences, vol. 1, Amer. Math. Society, 1993, pp. 7–11.Google Scholar
  21. 21.
    J. Dauben, Conceptual revolutions and the history of mathematics: two studies in the growth of knowledge. In Revolutions in Mathematics, ed. by D. Gillies, Oxford Univ. Press, 1992, pp. 49–82.Google Scholar
  22. 22.
    J. W. Dawson, The Life and Work of Kurt Gödel, A K Peters, 1997. (See especially the essay titled Logical Dilemmas.)Google Scholar
  23. 23.
    R. A. De Millo, R. J. Lipton, and A. J. Perlis, Social processes and proofs of theorems and programs, Math. Intelligencer 3:1 (1980) 31–40.CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    J. Dhombres and J. – B. Robert, Book Review: Joseph Fourier, 1768–1830: Créateur de la Physique-Mathématique, Berlin, 1998. In Math. Intelligencer 25:4 (2003) 77–80.Google Scholar
  25. 25.
    J. Dieudonné, Mathematics—the Music of Reason, Springer-Verlag, 1992.Google Scholar
  26. 26.
    J. Dieudonné, The beginnings of Italian algebraic geometry. In Studies in the History of Mathematics, ed. by E. R. Phillips, Math. Assoc. of Amer., 1987, pp. 278–299.Google Scholar
  27. 27.
    C. H. Edwards, The Historical Development of the Calculus, Springer-Verlag, 1979.Google Scholar
  28. 28.
    H. M. Edwards, Mathematical ideas, ideals, and ideology, Math. Intelligencer 14:2 (1992) 6–19.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    D. Epstein and S. Levy, Experimentation and proof in mathematics, Noticesof the Amer. Math. Soc. 42 (1995) 670–674.MATHMathSciNetGoogle Scholar
  30. 30.
    D. Gorenstein, The Enormous Theorem, Scientific Amer. (Dec. 1985) 104–115.Google Scholar
  31. 31.
    I. Grattan-Guinness, The Development of the Foundations of Mathematical Analysis from Euler to Riemann, MIT Press, 1970.Google Scholar
  32. 32.
    J. Gray, Weierstrass, Luzin, and intuition, Amer. Math. Monthly 108 (2001) 865–870.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    B. Grünbaum and G. C. Shephard, A new look at Euler’s theorem for polyhedra, Amer. Math. Monthly 101 (1994) 109–128.CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    T. L. Hankins, Sir William Rowan Hamilton, The Johns Hopkins Univ. Press, 1980.MATHGoogle Scholar
  35. 35.
    H. Hellman, Great Feuds in Mathematics, Wiley, 2006.Google Scholar
  36. 36.
    J. Horgan, The death of proof, Scientific Amer. 269 (Oct. 1993) 92–103.CrossRefMathSciNetGoogle Scholar
  37. 37.
    A. Jackson, Comme appelé du néant—as if summoned from the void: the life of Alexandre Grothendieck, Notices of the Amer. Math. Soc. 51 (2004) 1038–1055.MATHGoogle Scholar
  38. 38.
    A. Jaffe and F. Quinn, ‘Theoretical mathematics’: Toward a cultural synthesis of mathematics and theoretical physics, Bulletinof the Amer. Math. Soc. 29 (1993) 1–13.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    D. M. Jesseph, Squaring the Circle. The War between Hobbes and Wallis, Univ. of Chicago Press, 1999.Google Scholar
  40. 40.
    V. J. Katz, A History of Mathematics: An Introduction, 3rd ed., Addison-Wesley, 2009.Google Scholar
  41. 41.
    G. Kampis, L. Kvasz and M. Stöltzner (eds.), Appraising Lakatos: Mathematics, Methodology and the Man, Kluwer, 2002.Google Scholar
  42. 42.
    M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford Univ. Press, 1972.MATHGoogle Scholar
  43. 43.
    W. Knorr, Construction as existence proof in ancient geometry, Ancient Philosophy 3 (1983) 125–148.Google Scholar
  44. 44.
    G. Kolata, Mathematical proofs: the genesis of reasonable doubt, Science 192 (June 1976) 989–990.CrossRefGoogle Scholar
  45. 45.
    S. G. Kranz, The immortality of proof, Noticesof the Amer. Math. Soc. 41 (1994) 10–13.Google Scholar
  46. 46.
    I. Lakatos, Proofs and Refutations, Cambridge Univ. Press, 1976.MATHGoogle Scholar
  47. 47.
    C. W. H. Lam, How reliable is a computer-based proof?, Math. Intelligencer 12:1 (1990) 8–12.CrossRefMATHMathSciNetGoogle Scholar
  48. 48.
    J. Lambek, If Hamilton had prevailed: quaternions in physics, Math. Intelligencer 17:4 (1995) 7–15.CrossRefMATHMathSciNetGoogle Scholar
  49. 49.
    S. Lang, Mordell’s review, Siegel’s letter to Mordell, diophantine geometry, and 20th century mathematics, Noticesof the Amer. Math. Soc. 42 (1995) 339–350.Google Scholar
  50. 50.
    R. E. Langer, Fourier series: the genesis and evolution of a theory, Amer. Math. Monthly 54S (1947) 1–86.Google Scholar
  51. 51.
    D. Laugwitz, Bernhard Riemann, 1826–1866, Birkhäuser, 1999.Google Scholar
  52. 52.
    Y. I. Manin, Truth, rigour, and common sense. In Truth in Mathematics, ed. by H. G. Dales and G. Oliveri, Oxford Univ. Press, 1998, pp. 147–159.Google Scholar
  53. 53.
    Y. I. Manin, How convincing is a proof?, Math. Intelligencer 2:1 (1979) 17–18.CrossRefMathSciNetGoogle Scholar
  54. 54.
    A. F. Monna, Hermann Hankel, Niew. Arch. voor Wisk. 21 (1973) 64–87.MATHMathSciNetGoogle Scholar
  55. 55.
    G. H. Moore, At cross-purposes: The Gödel-Zermelo letters, Bulletin Can. Soc. Hist. Phil. Math. 27 (Nov. 2000) 6–8.Google Scholar
  56. 56.
    G. H. Moore, Zermelo’s Axiom of Choice: Its Origins, Development, and Influence, Springer-Verlag, 1982.Google Scholar
  57. 57.
    L. J. Mordell, Book review: Diophantine geometry, by S. Lang, Bulletinof the Amer. Math. Soc. 70 (1964) 491–498.Google Scholar
  58. 58.
    E. Neuenschwander, Studies in the history of complex function theory II: Interactions among the French School, Riemann, and Weierstrass, Bulletinof the Amer. Math. Soc. 5 (1981) 87–105.CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    J. Paradis, J. Pla, and P. Viader, Fermat and the quadrature of the folium of Descartes, Amer. Math. Monthly 111 (2004) 216–229.CrossRefMATHMathSciNetGoogle Scholar
  60. 60.
    G. Polya, Induction and Analogy in Mathematics, Princeton Univ. Press, 1953.Google Scholar
  61. 61.
    M. O. Rabin, Probabilistic algorithms. In Algorithms and Complexity: New Directions and Recent Results, ed. by J. F. Traub, Academic Press, 1976, pp. 21–40.Google Scholar
  62. 62.
    J. R. Ravetz, Vibrating strings and arbitrary functions. In The Logic of Personal Knowledge: Essays Presented to M. Polanyi on his Seventieth Birthday, The Free Press, 1961, pp. 71–88.Google Scholar
  63. 63.
    B. A. Rosenfeld, A History of Non-Euclidean Geometry, Springer-Verlag, 1988. (Translated from the Russian by A. Shenitzer.)Google Scholar
  64. 64.
    G.-C. Rota, The concept of mathematical truth. In Essays on Humanistic Mathematics, ed. by A. M. White, Math. Assoc. of Amer., 1993, pp. 91–96.Google Scholar
  65. 65.
    D. E. Rowe, On projecting the future and assessing the past—the 1946 Princeton bicentennial conference, Math. Intelligencer 25:4 (2003) 8–15.CrossRefMathSciNetGoogle Scholar
  66. 66.
    D. E. Rowe, Episodes in the Berlin-Göttingen rivalry, 1870–1930, Math. Intelligencer 22:1 (2000) 60–69.CrossRefMATHMathSciNetGoogle Scholar
  67. 67.
    A. Shenitzer, The Cinderella career of projective geometry, Math. Intelligencer 13:2 (1991) 50–55.CrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    S. Smale, Algebra and complexity theory, Bulletin of the Amer. Math. Soc. 4 (1981) 1–36.CrossRefMATHMathSciNetGoogle Scholar
  69. 69.
    J. Spencer, Short theorems with long proofs, Amer. Math. Monthly 90 (1983) 365–366.CrossRefMathSciNetGoogle Scholar
  70. 70.
    M. Stöltzner, What Lakatos could teach the mathematical physicists. In Appraising Lakatos: Mathematics, Methodology and the Man, ed. by G. Kampis, L. Kvasz and M. Stöltzner, Kluwer, 2002, pp. 157–187.Google Scholar
  71. 71.
    D. J. Struik, A Concise History of Mathematics, 4th ed., Dover, 1987.Google Scholar
  72. 72.
    W. P. Thurston, On proof and progress in mathematics, Bulletinof the Amer. Math. Soc. 30 (1994) 161–177.CrossRefMATHMathSciNetGoogle Scholar
  73. 73.
    C. Truesdell, The rational mechanics of flexible or elastic bodies, 1638–1788. In L. Euler, Opera, Ser. 2, Vol. 11, 1960, Section 2.Google Scholar
  74. 74.
    K. Volkert, Zur Differentzierbarkeit stetiger Funktionen—Ampère’s Beweis und seine Folgen, Arch. Hist. Exact Sc. 40 (1989) 37–112.CrossRefMATHMathSciNetGoogle Scholar
  75. 75.
    K. Volkert, Die Geschichte der pathologischen Funktionen—Ein Beitrag zur Enstehung der mathematischen Methologie, Arch. Hist. Exact Sc. 37 (1987) 193–232.CrossRefMATHMathSciNetGoogle Scholar
  76. 76.
    J. Von Neumann, The role of mathematics in the sciences and society, Collected Works, Vol. 4, ed. by A.H. Taub, Macmillan, 1963, pp. 477–490.Google Scholar
  77. 77.
    R. Westfall, Never at Rest, Cambridge Univ. Press, 1980.Google Scholar
  78. 78.
    H. Weyl, Axiomatic versus constructive procedures in mathematics, Math. Intelligencer 7:4 (1985) 10–17, 38.Google Scholar
  79. 79.
    H. Weyl, Mathematics and logic, Amer. Math. Monthly 53 (1946) 2–13.CrossRefMATHMathSciNetGoogle Scholar
  80. 80.
    O. Zariski, The fundamental ideas of abstract algebraic geometry. In Proceedings of the Intern. Congr. of Mathematicians, 1950, Vol. II, Amer. Math. Society, 1952, pp. 77–89.Google Scholar
  81. 81.
    D. Zeilberger, Theorems for a price: tomorrow’s semi-rigorous mathematical culture, Noticesof the Amer. Math. Soc. 40 (1993) 978–981.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada

Personalised recommendations