Skip to main content

Nonlinear Diffusion–Reaction Phenomena

  • Chapter
  • 5330 Accesses

Abstract

Many physical phenomena are described by the interaction of convection and diffusion and also by the interaction of diffusion and reaction. From a physical point of view, the convection–diffusion process and the diffusion–reaction process are quite fundamental in describing a wide variety of problems in physical, chemical, biological, and engineering sciences. Some nonlinear partial differential equations that model these processes provide many new insights into the question of interaction of nonlinearity and diffusion. It is well known that the Burgers equation is a simple nonlinear model equation representing phenomena described by a balance between convection and diffusion. The Fisher equation is another simple nonlinear model equation which arises in a wide variety of problems involving diffusion and reaction.

The profound study of nature is the most fertile source of mathematical discoveries.

Joseph Fourier

The research worker, in his efforts to express the fundamental laws of Nature in mathematical form, should strive mainly for mathematical beauty. He should take simplicity into consideration in a subordinate way to beauty…. It often happens that the requirements of simplicity and beauty are the same, but where they clash the latter must take precedence.

Paul Dirac

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Abdelkader, M.A. (1982). Travelling wave solutions for a generalized Fisher equation, J. Math. Anal. Appl. 85, 287–290.

    Article  MathSciNet  Google Scholar 

  • Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions, Dover, New York.

    MATH  Google Scholar 

  • Ablowitz, M.J. and Zeppetella, A. (1979). Explicit solutions of Fisher’s equation for a special wave speed, Bull. Math. Biol. 41, 835–840.

    MathSciNet  MATH  Google Scholar 

  • Ammerman, A.J. and Cavalli-Sforva, L.L. (1971). Measuring the rate of spread of early farming, Man 6, 674–688.

    Article  Google Scholar 

  • Ammerman, A.J. and Cavalli-Sforva, L.L. (1983). The Neolithic Transition and the Genetics of Populations in Europe, Princeton University Press, Princeton.

    Google Scholar 

  • Aoki, K. (1987). Gene-culture waves of advance, J. Math. Biol. 25, 453–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, R., Showalter, K., and Tyson, J.J. (1987). Propagation of chemical reactions in space, J. Chem. Educ. 64, 740–742.

    Google Scholar 

  • Aronson, D.G. (1980). Density-dependent interaction–diffusion systems, in Dynamics and Modelling of Reactive Systems (eds. W.E. Stewart, W.H. Ray, and C.C. Conley). Academic Press, Boston, 161–176.

    Google Scholar 

  • Barenblatt, G.I. (1979). Similarity, Self-similarity and Intermediate Asymptotics, Consultants Bureau, New York.

    MATH  Google Scholar 

  • Barenblatt, G.I. and Zel’dovich, Y.B. (1972). Self-similar solutions as intermediate asymptotics, Annu. Rev. Fluid Mech. 4, 285–312.

    Article  Google Scholar 

  • Benton, E.R. and Platzman, G.W. (1972). A table of solutions of one-dimensional Burgers equation, Q. Appl. Math. 30, 195–212.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff, G. (1950). Hydrodynamics, Princeton University Press,Princeton.

    MATH  Google Scholar 

  • Blackstock, D.T. (1964). Thermoviscous attenuation of plane, periodic finite-amplitude sound waves, J. Acoust. Soc. Am. 36, 534–542.

    Article  Google Scholar 

  • Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Am. Math. Soc. 285, 1–190.

    MathSciNet  Google Scholar 

  • Britton, N.F. (1986). Reaction-Diffusion Equations and Their Applications to Biology, Academic Press, New York.

    MATH  Google Scholar 

  • Burgers, J.M. (1948). A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1, 171–199.

    Article  MathSciNet  Google Scholar 

  • Burgers, J.M. (1974). The Nonlinear Diffusion Equation, Reidel, Dordrecht.

    MATH  Google Scholar 

  • Canosa, J. (1969). Diffusion in nonlinear multiplicative media, J. Math. Phys. 10, 1862–1868.

    Article  Google Scholar 

  • Canosa, J. (1973). On a nonlinear diffusion equation describing population growth, IBM J. Res. Dev. 17, 307–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Case, K.M. and Chiu, C.S. (1969). Burgers’ turbulence models, Phys. Fluids 12, 1799–1808.

    Article  MathSciNet  MATH  Google Scholar 

  • Cole, J.D. (1951). On a quasilinear parabolic equation occurring in aerodynamics, Q. Appl. Math. 9, 225–236.

    MATH  Google Scholar 

  • Crank, J. (1975). The Mathematics of Diffusion, 2nd edition, Oxford University Press, Oxford.

    Google Scholar 

  • Crighton, D.G. (1979). Model equations of nonlinear acoustics, Annu. Rev. Fluid Mech. 11, 11–23.

    Article  Google Scholar 

  • Crighton, D.G. and Scott, J.F. (1979). Asymptotic solution of model equations in nonlinear acoustics, Philos. Trans. R. Soc. Lond. A292, 101–134.

    MathSciNet  Google Scholar 

  • Dunbar, S.R. (1983). Travelling wave solutions of diffusive Lotka–Volterra equations, J. Math. Biol. 17, 11–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Fife, P.C. (1979). Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, Vol. 28, Springer, Berlin.

    MATH  Google Scholar 

  • Fisher, R.A. (1936). The wave of advance of advantageous genes, Ann. Eugen. 7, 335–369.

    Google Scholar 

  • Gazdag, J. and Canosa, J. (1974). Numerical solution of Fisher’s equation, J. Appl. Probab. 11, 445–457.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghez, R. (1988). A Primer of Diffusion Problems, Wiley, New York.

    Book  Google Scholar 

  • Grindrod, P. (1991). Patterns and Waves, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Gurney, W.S.C. and Nisbet, R.M. (1975). The regulation of inhomogeneous populations, J. Theor. Biol. 52, 441–457.

    Article  Google Scholar 

  • Gurtin, M.E. and MacCamy, R.C. (1977). On the diffusion of biological populations, Math. Biosci. 33, 35–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Hagstrom, T. and Keller, H.B. (1986). The numerical calculations of traveling wave solutions of nonlinear parabolic equations (Preprint)

    Google Scholar 

  • Hopf, E. (1950). The partial differential equation u t +uu x =μu xx , Commun. Pure Appl. Math. 3, 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoppensteadt, F.C. (1975). Mathematical Theories of Populations: Demographics, Genetics, and Epidemic, CBMS Lectures, Vol. 20, SIAM, Philadelphia.

    Google Scholar 

  • Johnson, R.S. (1970). A nonlinear equation incorporating damping and dispersion, J. Fluid Mech. 42, 49–60.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, D.S. and Sleeman, B.D. (1983). Differential Equations and Mathematical Biology, Allen and Unwin, London.

    MATH  Google Scholar 

  • Kaliappan, P. (1984). An exact solution for travelling waves, Physica D11, 368–374.

    MathSciNet  Google Scholar 

  • Kametaka, Y. (1976). On the nonlinear diffusion equation of Kolmogorov–Petrovskii–Piskunov type, Osaka J. Math. 13, 11–66.

    MathSciNet  MATH  Google Scholar 

  • Kolmogorov, A., Petrovsky, I., and Piscunov, N. (1937). A study of the equation of diffusion with increase in the quantity of matter and its application to a biological problem, Bull. Univ. Moscow, Ser. Int. Sec. A1, 1–25.

    Google Scholar 

  • Kopell, N. and Howard, L.N. (1973). Plane wave solutions to reaction–diffusion equations, Stud. Appl. Math. 42, 291–328.

    MathSciNet  Google Scholar 

  • Kriess, H.O. and Lorenz, J. (1989). Initial-Boundary Value Problems and the Navier–Stokes Equations, Academic Press, New York.

    Google Scholar 

  • Lardner, R.W. (1986). Third order solutions of Burgers equation, Q. Appl. Math. 44, 293–302.

    MathSciNet  MATH  Google Scholar 

  • Larson, D.A. (1978). Transient bounds and time asymptotic behaviour of solutions, SIAM J. Appl. Math. 34, 93–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill, M.J. (1956). Viscosity effects in sound waves of finite amplitude, in Surveys in Mechanics (eds. G.K. Batchelor and R.M. Davies), Cambridge University Press, Cambridge, 250–351.

    Google Scholar 

  • Logan, J.D. and Dunbar, S.R. (1992). Travelling waves in model reacting flows with reversible kinetics, IMA J. Appl. Math. 49, 103–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Logan, J.D. and Shores, T.S. (1993a). Steady state solutions in a model reacting flow problem, Appl. Anal. 48, 273–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Logan, J.D. and Shores, T.S. (1993b). On a system of nonlinear hyperbolic conservation laws with sources, Math. Models Methods Appl. Sci. 3, 341–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Manoranjan, V.S. and Mitchell, A.R. (1983). A numerical study of the Belousov–Zhabotinskii reaction using Galerkin finite element methods, J. Math. Biol. 16, 251–260.

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, H.P. (1975). Application of Brownian motion to the equations of Kolmogorov–Pertovskii–Piskunov, Commun. Pure Appl. Math. 28, 323–331.

    Article  MathSciNet  MATH  Google Scholar 

  • Montroll, E.W. and West, B.J. (1973). Models of population growth, diffusion, competition and rearrangement, in Synergetic (ed. H. Haken), B.G. Teubner, Stuttgart, 143–156.

    Google Scholar 

  • Munier, A., Burgen, J.R., Gutierrez, J., Fijalkow, E., and Feix, M.R. (1981). Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math. 40, 191–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J.D. (1970a). Perturbation effects on the decay of discontinuous solutions of nonlinear first order wave equations, SIAM J. Appl. Math. 19, 273–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, J.D. (1970b). On the Gunn-effect and other physical examples of perturbed conservation equations, J. Fluid Mech. 44, 315–346.

    Article  Google Scholar 

  • Murray, J.D. (1973). On Burgers’ model equation for turbulence, J. Fluid Mech. 59, 263–279.

    Article  MATH  Google Scholar 

  • Murray, J.D. (1993). Mathematical Biology, 2nd corrected edition, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Naumkin, P.I. and Shishmarev, I.A. (1994). Nonlinear Nonlocal Equations in the Theory of Waves, Vol. 133, Am. Math. Soc., Providence.

    MATH  Google Scholar 

  • Newman, W.I. (1980). Some exact solutions to a nonlinear diffusion problem in population genetics and combustion, J. Theor. Biol. 85, 325–334.

    Article  Google Scholar 

  • Newman, W.I. (1983). Nonlinear diffusion: Self-similarity and travelling waves, Pure Appl. Geophys. 121, 417–441.

    Article  Google Scholar 

  • Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin.

    MATH  Google Scholar 

  • Parker, D.F. (1980). The decay of saw-tooth solutions to the Burgers equation, Proc. R. Soc. Lond. A369, 409–424.

    Google Scholar 

  • Pattle, R.E. (1959). Diffusion from an instantaneous point source with a concentration-dependent coefficient, Q. J. Mech. Appl. Math. 12, 407–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Penel, P. and Brauner, C.M. (1974). Identification of parameters in a nonlinear selfconsistent system including a Burgers equation, J. Math. Anal. Appl. 45, 654–681.

    Article  MathSciNet  MATH  Google Scholar 

  • Riemann, B., (1858). Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Göttingen Abhandlunger, Vol. viii, p. 43 (Werke, 2te Aufl., Leipzig, 1892, p. 157).

    Google Scholar 

  • Rodin, E.Y. (1970). On some approximate and exact solutions of boundary value problems for Burgers equations, J. Math. Anal. Appl. 30, 401–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenau, P. (1982). A nonlinear thermal wave in a reacting medium, Physica 5D, 136–144.

    Google Scholar 

  • Shigesada, N. (1980). Spatial distribution of dispersing animals, J. Math. Biol. 9, 85–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Smoller, J. (1994). Shock Waves and Reaction–Diffusion Equations, 2nd edition, Springer, New York.

    MATH  Google Scholar 

  • Sparrow, E.M., Quack, H., and Boerner, C.J. (1970). Local nonsimilarity boundary-layer solutions, AIAA J. 8, 1342–1350.

    Article  Google Scholar 

  • Tang, S. and Webber, R.O. (1991). Numerical study of Fisher’s equation by a Petrov–Galerkin finite element method, J. Aust. Math. Soc. B33, 27–38.

    Google Scholar 

  • Walsh, R.A. (1969). Initial-value problems associated with u t (x,t)=δu xx (x,t)−u(x,t)u x (x,t), J. Math. Anal. Appl. 26, 235–247.

    Article  MathSciNet  MATH  Google Scholar 

  • Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York.

    MATH  Google Scholar 

  • Zel’dovich, Ya.B. and Raizer, Yu.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press, New York.

    Google Scholar 

  • Zel’dovich, Ya.B. and Raizer, Yu.P. (1968). Elements of Gas Dynamics and the Classical Theory of Shock Waves, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokenath Debnath .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Debnath, L. (2012). Nonlinear Diffusion–Reaction Phenomena. In: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8265-1_8

Download citation

Publish with us

Policies and ethics