# Nonlinear Klein–Gordon and Sine-Gordon Equations

## Abstract

This chapter deals with the theory and applications of nonlinear Klein–Gordon (KG) and sine-Gordon (SG) equations. Special emphasis is given to various methods of solutions of these equations. The Green function method combined with integral transforms is employed to solve the linear Klein–Gordon equation. The Whitham averaging procedure and the Whitham averaged Lagrangian principle are used to discuss solutions of the nonlinear Klein–Gordon equation. Included are different ways of finding general and particular solutions of the sine-Gordon equation. Special attention is given to solitons, antisolitons, breather solutions and the energy associated with them, interaction of solitons, Bäcklund transformations, similarity solutions, and the inverse scattering method. Significant features of these methods and solutions are described with other ramifications.

## Keywords

Solitary Wave Wave Solution Soliton Solution Gordon Equation Solitary Wave Solution## Bibliography

- Biondini, G. and Wang, D. (2010). On the soliton solutions of the two-dimensional Toda Lattice,
*J. Phys. A, Math. Theor.***43**(43), 1–20. #43007 MathSciNetCrossRefGoogle Scholar - Collins, M.A. (1981). A quasi-continuum approach for solitons in an atomic chain,
*Chem. Phys. Lett.***77**, 342–347. MathSciNetCrossRefGoogle Scholar - Davis, H.T. (1962).
*Introduction to Nonlinear Differential and Integral Equations*, Dover, New York. MATHGoogle Scholar - De Leonardis, R.M. and Trullinger, S.E. (1980). Theory of boundary effects on sine-Gordon solitons,
*J. Appl. Phys.***51**, 1211–1226. CrossRefGoogle Scholar - Debnath, L. (1995).
*Integral Transforms and Their Applications*, CRC Press, Boca Raton. MATHGoogle Scholar - Debnath, L. and Bhatta, D. (2004). On solutions to a few linear fractional inhomogeneous partial differential equations in fluid mechanics,
*Fract. Calc. Appl. Anal.***7**, 21–36. MathSciNetMATHGoogle Scholar - Drazin, P.G. (1983).
*Solitons*, Cambridge University Press, Cambridge. MATHCrossRefGoogle Scholar - Duncan, D.B., Eilbeck, J.C., Feddersen, H., and Wattis, J.A.D. (1993). Solitons on Lattices,
*Physica D***68**, 1–11. MATHCrossRefGoogle Scholar - Dutta, M. and Debnath, L. (1965).
*Elements of the Theory of Elliptic and Associated Functions with Applications*, World Press Pub. Ltd., Calcutta. MATHGoogle Scholar - Eilbeck, J.C. and Flesch, B. (1990). Calculation of families of solitary waves on discrete lattices,
*Phys. Lett.***A149**, 200–202. MathSciNetGoogle Scholar - Hirota, R. (1973a). Exact envelope-soliton solutions of a nonlinear wave equation,
*J. Math. Phys.***14**, 805–809. MathSciNetMATHCrossRefGoogle Scholar - Hirota, R. (1973b). Exact
*N*-solutions of the wave equation of long waves in shallow water and in nonlinear lattices,*J. Math. Phys.***14**, 810–814. MathSciNetMATHCrossRefGoogle Scholar - Lamb, G.L. (1971). Analytical descriptions of ultrashort optical pulse propagation in a resonant medium,
*Rev. Mod. Phys.***49**, 99–124. MathSciNetCrossRefGoogle Scholar - Lamb, G.L. (1973). Phase variation in coherent-optical-pulse propagation,
*Phys. Rev. Lett.***31**, 196–199. CrossRefGoogle Scholar - Lamb, G.L. (1980).
*Elements of Soliton Theory*, Wiley, New York. MATHGoogle Scholar - McCall, S.L. and Hahn, E.L. (1967). Self-induced transparency by pulsed coherent light,
*Phys. Rev. Lett.***18**, 908–911. CrossRefGoogle Scholar - McCall, S.L. and Hahn, E.L. (1969) Self-induced transparency,
*Phys. Rev.***183**, 457–485. CrossRefGoogle Scholar - Newell, A.C. and Kaup, D.J. (1978). Solitons as particles, oscillations, and in slowly changing media: A singular perturbation theory,
*Proc. R. Soc. Lond.***A361**, 413–446. Google Scholar - Perring, J.K. and Skyrme, T.H.R. (1962). A model of unified field equation,
*Nucl. Phys.***31**, 550–555. MathSciNetMATHCrossRefGoogle Scholar - Scott, A.C. (1969). A nonlinear Klein–Gordon equation,
*Am. J. Phys.***37**, 52–61. CrossRefGoogle Scholar - Scott, A.C. (2003).
*Nonlinear Science*, 2nd edition, Oxford University Press, Oxford. MATHGoogle Scholar - Toda, M. (1967a). Vibration of a chain with nonlinear interaction,
*J. Phys. Soc. Jpn.***22**, 431–436. CrossRefGoogle Scholar - Toda, M. (1967b). Wave propagation in anharmonic lattices,
*J. Phys. Soc. Jpn.***23**, 501–506. CrossRefGoogle Scholar - Whitham, G.B. (1965a). A general approach to linear and nonlinear dispersive waves using a Lagrangian,
*J. Fluid Mech.***22**, 273–283. MathSciNetCrossRefGoogle Scholar - Whitham, G.B. (1965b). Nonlinear dispersive waves,
*Proc. R. Soc. Lond.***A283**, 238–261. MathSciNetGoogle Scholar - Whitham, G.B. (1974).
*Linear and Nonlinear Waves*, Wiley, New York. MATHGoogle Scholar