The Nonlinear Schrödinger Equation and Solitary Waves

  • Lokenath Debnath


It has already been indicated in Section  2.3 that the nonlinear Schrödinger (NLS) equation arises in a wide variety of physical problems in fluid mechanics, plasma physics, and nonlinear optics. The most common applications of the NLS equation include self-focusing of beams in nonlinear optics, modeling of propagation of electromagnetic pulses in nonlinear optical fibers which act as wave guides, and stability of Stokes waves in water. Some formal derivations of the NLS equation have been obtained by several methods which include the multiple scales expansions, the asymptotic method, Whitham’s (J. Fluid Mech. 22:273–283, 1965a, Proc. R. Soc. Lond. A283:238–261, 1965b) averaged variational equations, and Phillips’ (J. Fluid Mech. 106:215–227, 1981) resonant interaction equations. Zakharov and Shabat (Sov. Phys. JETP 34:62–69, 1972) developed an ingenious inverse scattering method to show that the NLS equation is completely integrable. The NLS equation is of great importance in adding to our fundamental knowledge of the general theory of nonlinear dispersive waves.


Dispersion Relation Solitary Wave Soliton Solution Solitary Wave Solution Envelope Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ablowitz, M.J. and Segur, H. (1979). On the evolution of packets of water waves, J. Fluid Mech. 92, 691–715. MathSciNetMATHCrossRefGoogle Scholar
  2. Benjamin, T.B. and Feir, J.E. (1967). The disintegration of wavetrains on deep water, Part 1, Theory, J. Fluid Mech. 27, 417–430. MATHCrossRefGoogle Scholar
  3. Benney, D.J. and Roskes, G. (1969). Wave instabilities, Stud. Appl. Math. 48, 377–385. MATHGoogle Scholar
  4. Birkhoff, G.D. (1927). Dynamical Systems, Am. Math. Soc., Providence. MATHGoogle Scholar
  5. Chu, V.H. and Mei, C.C. (1970). On slowly varying Stokes waves, J. Fluid Mech. 41, 873–887. MathSciNetMATHCrossRefGoogle Scholar
  6. Chu, V.H. and Mei, C.C. (1971). The nonlinear evolution of Stokes waves in deep water, J. Fluid Mech. 47, 337–351. MATHCrossRefGoogle Scholar
  7. Davey, A. and Stewartson, K. (1974). On three dimensional packets of surface waves, Proc. R. Soc. Lond. A338, 101–110. MathSciNetGoogle Scholar
  8. Debnath, L. (1994). Nonlinear Water Waves, Academic Press, Boston. MATHGoogle Scholar
  9. Dutta, M. and Debnath, L. (1965). Elements of the Theory of Elliptic and Associated Functions with Applications, World Press Pub. Ltd., Calcutta. MATHGoogle Scholar
  10. Fermi, E., Pasta, J., and Ulam, S. (1955). Studies of nonlinear problems I, Los Alamos Report LA 1940, in Lectures in Applied Mathematics (ed. A.C. Newell), Vol. 15, Am. Math. Soc., Providence, 143–156. Google Scholar
  11. Fornberg, B. and Whitham, G.B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. A289, 373–404. MathSciNetGoogle Scholar
  12. Gibbons, J., Thornhill, S.G., Wardrop, M.J., and ter Haar, D. (1977). On the theory of Langmuir solitons, J. Plasma Phys. 17, 153–170. CrossRefGoogle Scholar
  13. Hasegawa, A. (1990). Optical Solitons in Fibers, 2nd edition, Springer, Berlin. Google Scholar
  14. Hasegawa, A. and Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I: Anomalous dispersion, Appl. Phys. Lett. 23, 142–144. CrossRefGoogle Scholar
  15. Hasimoto, H. (1972). A soliton on a vortex filament, J. Fluid Mech. 51, 477–485. MATHCrossRefGoogle Scholar
  16. Hasimoto, H. and Ono, H. (1972). Nonlinear modulation of gravity waves, J. Phys. Soc. Jpn. 33, 805–811. CrossRefGoogle Scholar
  17. Infeld, E. and Rowlands, G. (1990). Nonlinear Waves, Solitons and Chaos, Cambridge University Press, Cambridge. MATHGoogle Scholar
  18. Karpman, V.I. (1971). High frequency electromagnetic field in plasma with negative dielectric constant, Plasma Phys. 13, 477–490. CrossRefGoogle Scholar
  19. Karpman, V.I. (1975a). Nonlinear Waves in Dispersive Media, Pergamon Press, London. Google Scholar
  20. Karpman, V.I. (1975b). On the dynamics of sonic-Langmuir solitons, Phys. Scr. 11, 263–265. CrossRefGoogle Scholar
  21. Konno, K. and Wadati, M. (1975). Simple derivation of the Bäcklund transformation from the Riccati form of the inverse method, Prog. Theor. Phys. 53, 1652–1656. MathSciNetMATHCrossRefGoogle Scholar
  22. Lake, B.M., Yuen, H.C., Rundgaldier, H., and Ferguson, W.E. (1977). Nonlinear deep-water waves: Theory and experiment, Part 2, Evolution of a continuous wave train, J. Fluid Mech. 83, 49–74. CrossRefGoogle Scholar
  23. Ma, Y.-C. (1979). The perturbed plane-wave solution of the cubic Schrödinger equation, Stud. Appl. Math. 60, 43–58. MathSciNetGoogle Scholar
  24. Mollenauer, L.F., Gordon, J.P., and Islam, M.N. (1986). Soliton propagation in long fibres with periodically compensated loss, IEEE J. Quantum Electron. 22, 1284–1286. CrossRefGoogle Scholar
  25. Oikawa, M. and Yajima, N. (1974a). A class of exactly solvable nonlinear evolution equations, Prog. Theor. Phys. Suppl. 54, 1576–1577. MathSciNetGoogle Scholar
  26. Oikawa, M. and Yajima, M. (1974b). A perturbation approach to nonlinear systems II. Interaction of nonlinear modulated waves, J. Phys. Soc. Jpn. 37, 486–496. MathSciNetCrossRefGoogle Scholar
  27. Peregrine, D.H. (1983). Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. B25, 16–43. MathSciNetGoogle Scholar
  28. Phillips, O.M. (1981). Wave interactions—the evolution of an idea, J. Fluid Mech. 106, 215–227. MATHCrossRefGoogle Scholar
  29. Rowland, H.L., Lyon, J.G., and Papadopoulus, K. (1981). Strong Langmuir turbulence in one and two dimensions, Phys. Rev. Lett. 46, 346–349. CrossRefGoogle Scholar
  30. Sanuki, H., Shimizu, K., and Todoroki, J. (1972). Effects of Landau damping on nonlinear wave modulation in plasma, J. Phys. Soc. Jpn. 33, 198–205. CrossRefGoogle Scholar
  31. Schmidt, G. (1975). Stability of envelope solitons, Phys. Rev. Lett. 34, 724–726. CrossRefGoogle Scholar
  32. Thyagaraja, A. (1979). Recurrent motions in certain continuum dynamical system, Phys. Fluids 22, 2093–2096. MATHCrossRefGoogle Scholar
  33. Thyagaraja, A. (1981). Recurrence, dimensionality, and Lagrange stability of solutions of the nonlinear Schödinger equation, Phys. Fluids 24, 1973–1975. MathSciNetMATHCrossRefGoogle Scholar
  34. Thyagaraja, A. (1983). Recurrence phenomena and the number of effective degrees of freedom in nonlinear wave motions, in Nonlinear Waves (ed. L. Debnath), Cambridge University Press, Cambridge, 308–325. CrossRefGoogle Scholar
  35. Whitham, G.B. (1965a). A general approach to linear and nonlinear dispersive waves using a Lagrangian, J. Fluid Mech. 22, 273–283. MathSciNetCrossRefGoogle Scholar
  36. Whitham, G.B. (1965b). Nonlinear dispersive waves, Proc. R. Soc. Lond. A283, 238–261. MathSciNetGoogle Scholar
  37. Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York. MATHGoogle Scholar
  38. Yajima, N. and Outi, A. (1971). A new example of stable solitary waves, Prog. Theor. Phys. 45, 1997–2005. CrossRefGoogle Scholar
  39. Yuen, H.C. and Ferguson, W.E., Jr. (1978a). Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation, Phys. Fluids 21, 1275–1278. CrossRefGoogle Scholar
  40. Yuen, H.C. and Ferguson, W.E., Jr. (1978b). Fermi–Pasta–Ulam recurrence in the two space dimensional nonlinear Schrödinger equation, Phys. Fluids 21, 2116–2118. CrossRefGoogle Scholar
  41. Yuen, H.C. and Lake, B.M. (1975). Nonlinear deep water waves: Theory and experiment, Phys. Fluids 18, 956–960. MATHCrossRefGoogle Scholar
  42. Yuen, H.C. and Lake, B.M. (1980). Instabilities of wave on deep water, Annu. Rev. Fluid Mech. 12, 303–334. CrossRefGoogle Scholar
  43. Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243. MATHCrossRefGoogle Scholar
  44. Zakharov, V.E. and Shabat, A.B. (1972). Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media, Sov. Phys. JETP 34, 62–69. MathSciNetGoogle Scholar
  45. Zakharov, V.E. and Shabat, A.B. (1973). Interaction between solitons in a stable medium, Sov. Phys. JETP 37, 823–828. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Texas, Pan AmericanEdinburgUSA

Personalised recommendations