Skip to main content

The Nonlinear Schrödinger Equation and Solitary Waves

  • Chapter
  • 5353 Accesses

Abstract

It has already been indicated in Section 2.3 that the nonlinear Schrödinger (NLS) equation arises in a wide variety of physical problems in fluid mechanics, plasma physics, and nonlinear optics. The most common applications of the NLS equation include self-focusing of beams in nonlinear optics, modeling of propagation of electromagnetic pulses in nonlinear optical fibers which act as wave guides, and stability of Stokes waves in water. Some formal derivations of the NLS equation have been obtained by several methods which include the multiple scales expansions, the asymptotic method, Whitham’s (J. Fluid Mech. 22:273–283, 1965a, Proc. R. Soc. Lond. A283:238–261, 1965b) averaged variational equations, and Phillips’ (J. Fluid Mech. 106:215–227, 1981) resonant interaction equations. Zakharov and Shabat (Sov. Phys. JETP 34:62–69, 1972) developed an ingenious inverse scattering method to show that the NLS equation is completely integrable. The NLS equation is of great importance in adding to our fundamental knowledge of the general theory of nonlinear dispersive waves.

…Schrödinger and I both had a very strong appreciation of mathematical beauty, and this appreciation of mathematical beauty dominated all our work. It was a sort of act of faith with us that any equations which describe fundamental laws of Nature must have great mathematical beauty in them. It was like a religion with us. It was a very profitable religion to hold, and can be considered the basis of much of our success.

Paul Dirac

…the progress of physics will to a large extent depend on the progress of nonlinear mathematics, of methods to solve nonlinear equations …and therefore we can learn by comparing different nonlinear problems.

Werner Heisenberg

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Ablowitz, M.J. and Segur, H. (1979). On the evolution of packets of water waves, J. Fluid Mech. 92, 691–715.

    Article  MathSciNet  MATH  Google Scholar 

  • Benjamin, T.B. and Feir, J.E. (1967). The disintegration of wavetrains on deep water, Part 1, Theory, J. Fluid Mech. 27, 417–430.

    Article  MATH  Google Scholar 

  • Benney, D.J. and Roskes, G. (1969). Wave instabilities, Stud. Appl. Math. 48, 377–385.

    MATH  Google Scholar 

  • Birkhoff, G.D. (1927). Dynamical Systems, Am. Math. Soc., Providence.

    MATH  Google Scholar 

  • Chu, V.H. and Mei, C.C. (1970). On slowly varying Stokes waves, J. Fluid Mech. 41, 873–887.

    Article  MathSciNet  MATH  Google Scholar 

  • Chu, V.H. and Mei, C.C. (1971). The nonlinear evolution of Stokes waves in deep water, J. Fluid Mech. 47, 337–351.

    Article  MATH  Google Scholar 

  • Davey, A. and Stewartson, K. (1974). On three dimensional packets of surface waves, Proc. R. Soc. Lond. A338, 101–110.

    MathSciNet  Google Scholar 

  • Debnath, L. (1994). Nonlinear Water Waves, Academic Press, Boston.

    MATH  Google Scholar 

  • Dutta, M. and Debnath, L. (1965). Elements of the Theory of Elliptic and Associated Functions with Applications, World Press Pub. Ltd., Calcutta.

    MATH  Google Scholar 

  • Fermi, E., Pasta, J., and Ulam, S. (1955). Studies of nonlinear problems I, Los Alamos Report LA 1940, in Lectures in Applied Mathematics (ed. A.C. Newell), Vol. 15, Am. Math. Soc., Providence, 143–156.

    Google Scholar 

  • Fornberg, B. and Whitham, G.B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. A289, 373–404.

    MathSciNet  Google Scholar 

  • Gibbons, J., Thornhill, S.G., Wardrop, M.J., and ter Haar, D. (1977). On the theory of Langmuir solitons, J. Plasma Phys. 17, 153–170.

    Article  Google Scholar 

  • Hasegawa, A. (1990). Optical Solitons in Fibers, 2nd edition, Springer, Berlin.

    Google Scholar 

  • Hasegawa, A. and Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I: Anomalous dispersion, Appl. Phys. Lett. 23, 142–144.

    Article  Google Scholar 

  • Hasimoto, H. (1972). A soliton on a vortex filament, J. Fluid Mech. 51, 477–485.

    Article  MATH  Google Scholar 

  • Hasimoto, H. and Ono, H. (1972). Nonlinear modulation of gravity waves, J. Phys. Soc. Jpn. 33, 805–811.

    Article  Google Scholar 

  • Infeld, E. and Rowlands, G. (1990). Nonlinear Waves, Solitons and Chaos, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Karpman, V.I. (1971). High frequency electromagnetic field in plasma with negative dielectric constant, Plasma Phys. 13, 477–490.

    Article  Google Scholar 

  • Karpman, V.I. (1975a). Nonlinear Waves in Dispersive Media, Pergamon Press, London.

    Google Scholar 

  • Karpman, V.I. (1975b). On the dynamics of sonic-Langmuir solitons, Phys. Scr. 11, 263–265.

    Article  Google Scholar 

  • Konno, K. and Wadati, M. (1975). Simple derivation of the Bäcklund transformation from the Riccati form of the inverse method, Prog. Theor. Phys. 53, 1652–1656.

    Article  MathSciNet  MATH  Google Scholar 

  • Lake, B.M., Yuen, H.C., Rundgaldier, H., and Ferguson, W.E. (1977). Nonlinear deep-water waves: Theory and experiment, Part 2, Evolution of a continuous wave train, J. Fluid Mech. 83, 49–74.

    Article  Google Scholar 

  • Ma, Y.-C. (1979). The perturbed plane-wave solution of the cubic Schrödinger equation, Stud. Appl. Math. 60, 43–58.

    MathSciNet  Google Scholar 

  • Mollenauer, L.F., Gordon, J.P., and Islam, M.N. (1986). Soliton propagation in long fibres with periodically compensated loss, IEEE J. Quantum Electron. 22, 1284–1286.

    Article  Google Scholar 

  • Oikawa, M. and Yajima, N. (1974a). A class of exactly solvable nonlinear evolution equations, Prog. Theor. Phys. Suppl. 54, 1576–1577.

    MathSciNet  Google Scholar 

  • Oikawa, M. and Yajima, M. (1974b). A perturbation approach to nonlinear systems II. Interaction of nonlinear modulated waves, J. Phys. Soc. Jpn. 37, 486–496.

    Article  MathSciNet  Google Scholar 

  • Peregrine, D.H. (1983). Water waves, nonlinear Schrödinger equations and their solutions, J. Aust. Math. Soc. B25, 16–43.

    MathSciNet  Google Scholar 

  • Phillips, O.M. (1981). Wave interactions—the evolution of an idea, J. Fluid Mech. 106, 215–227.

    Article  MATH  Google Scholar 

  • Rowland, H.L., Lyon, J.G., and Papadopoulus, K. (1981). Strong Langmuir turbulence in one and two dimensions, Phys. Rev. Lett. 46, 346–349.

    Article  Google Scholar 

  • Sanuki, H., Shimizu, K., and Todoroki, J. (1972). Effects of Landau damping on nonlinear wave modulation in plasma, J. Phys. Soc. Jpn. 33, 198–205.

    Article  Google Scholar 

  • Schmidt, G. (1975). Stability of envelope solitons, Phys. Rev. Lett. 34, 724–726.

    Article  Google Scholar 

  • Thyagaraja, A. (1979). Recurrent motions in certain continuum dynamical system, Phys. Fluids 22, 2093–2096.

    Article  MATH  Google Scholar 

  • Thyagaraja, A. (1981). Recurrence, dimensionality, and Lagrange stability of solutions of the nonlinear Schödinger equation, Phys. Fluids 24, 1973–1975.

    Article  MathSciNet  MATH  Google Scholar 

  • Thyagaraja, A. (1983). Recurrence phenomena and the number of effective degrees of freedom in nonlinear wave motions, in Nonlinear Waves (ed. L. Debnath), Cambridge University Press, Cambridge, 308–325.

    Chapter  Google Scholar 

  • Whitham, G.B. (1965a). A general approach to linear and nonlinear dispersive waves using a Lagrangian, J. Fluid Mech. 22, 273–283.

    Article  MathSciNet  Google Scholar 

  • Whitham, G.B. (1965b). Nonlinear dispersive waves, Proc. R. Soc. Lond. A283, 238–261.

    MathSciNet  Google Scholar 

  • Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York.

    MATH  Google Scholar 

  • Yajima, N. and Outi, A. (1971). A new example of stable solitary waves, Prog. Theor. Phys. 45, 1997–2005.

    Article  Google Scholar 

  • Yuen, H.C. and Ferguson, W.E., Jr. (1978a). Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation, Phys. Fluids 21, 1275–1278.

    Article  Google Scholar 

  • Yuen, H.C. and Ferguson, W.E., Jr. (1978b). Fermi–Pasta–Ulam recurrence in the two space dimensional nonlinear Schrödinger equation, Phys. Fluids 21, 2116–2118.

    Article  Google Scholar 

  • Yuen, H.C. and Lake, B.M. (1975). Nonlinear deep water waves: Theory and experiment, Phys. Fluids 18, 956–960.

    Article  MATH  Google Scholar 

  • Yuen, H.C. and Lake, B.M. (1980). Instabilities of wave on deep water, Annu. Rev. Fluid Mech. 12, 303–334.

    Article  Google Scholar 

  • Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240–243.

    Article  MATH  Google Scholar 

  • Zakharov, V.E. and Shabat, A.B. (1972). Exact theory of two-dimensional self focusing and one-dimensional self modulation of waves in nonlinear media, Sov. Phys. JETP 34, 62–69.

    MathSciNet  Google Scholar 

  • Zakharov, V.E. and Shabat, A.B. (1973). Interaction between solitons in a stable medium, Sov. Phys. JETP 37, 823–828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokenath Debnath .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Debnath, L. (2012). The Nonlinear Schrödinger Equation and Solitary Waves. In: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8265-1_10

Download citation

Publish with us

Policies and ethics