Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

One of the most interesting class of curves, from the perspective of arithmetical algebraic geometry, are the so-called modular curves. Some of the most remarkable applications of algebraic geometry to coding theory arise from these modular curves. It turns out these algebraic-geometric codes (“AG codes”) constructed from modular curves can have parameters which beat the Gilbert–Varshamov lower bound if the ground field is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The expository paper [JS] discussed this in more detail from the computational perspective.

  2. 2.

    For some introductions to this highly technical work of Langlands and Kottwitz, the reader is referred to Labesse [Lab], Clozel [Cl], and Casselman [Cas2].

  3. 3.

    The space \(\mathbb{H}=\{ z \in\mathbb{C}\;|\; \mathrm{Im}\,(z) > 0\}\) is also called the Poincaré upper half plane.

  4. 4.

    This result was essentially first proved by Igusa [Ig] (from the classical perspective). See also [TV], Theorem 4.1.48, and [Cas1] for an interesting discussion of what happens at the “bad primes,” and Deligne’s paper in the same volume as [Cas1].

  5. 5.

    Type optional_packages() for the name of the latest version of this database. This loads both ClassicalModularPolynomialDatabase and AtkinModularPolynomialDatabase.

  6. 6.

    In fact, if we write \(f(z)=\,\sum _{n=1}^{\infty}a_{n}q^{n}\), then

    $$\zeta_C(s)=\bigl(1-p^{-s}\bigr)^{-1}\prod_{p\not= 11}\bigl(1-a_pp^{-s}+p^{1-2s}\bigr)^{-1}$$

    is the global Hasse–Weil zeta function of the elliptic curve C of conductor 11 with Weierstrass model y 2+y=x 3x 2 [Gel] (p. 252).

  7. 7.

    The genus formulas for X 0(N) given in [Shim] and [Kn] both apparently contain a (typographical) error. The problem is in the μ 2 term, which should contain a Legendre symbol \(({\frac{-4}{n}})\) instead of \(({\frac{-1}{n}})\). See, for example, [Ei] for a correct generalization.

  8. 8.

    In other words, C has length 56, dimension 22 over \({\mathbb{F}}\), and minimum distance 32.

  9. 9.

    The conductor is defined in Ogg [O1], but see also [Gel], Sect. I.2, or [Kn], p. 390.

  10. 10.

    Recall Singleton’s bound: nd+k−1.

  11. 11.

    When p=3 it is a model of a modular curve of level 32 (see Table 6.1). When p=7 this example arises in the reduction of X(7) in characteristic 7 [E2].

References

  1. Adler, A.: The Mathieu group M11 and the modular curve X11. Proc. Lond. Math. Soc. 74, 1–28 (1997)

    Article  MathSciNet  Google Scholar 

  2. Adler, A.: Some integral representations of \(\mathit{PSL}_{2}(\mathbb{F}_{p})\) and their applications. J. Algebra 72, 115–145 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bending, P., Camina, A., Guralnick, R.: Automorphisms of the modular curve X(p) in positive characteristic. Preprint (2003)

    Google Scholar 

  4. Birch, B.J.: Some calculations of modular relations. In: Kuyk, W. (ed.) Modular Forms of One Variable, I, Proc. Antwerp Conf., 1972. Lecture Notes in Math., vol. 320. Springer, New York (1973)

    Google Scholar 

  5. Birch, B.J., Kuyk, W. (eds.): Modular forms of one variable, IV, Proc. Antwerp Conf., 1972. Lecture Notes in Math., vol. 476. Springer, New York (1975)

    Google Scholar 

  6. Borne, N.: Une formule de Riemann-Roch equivariante pour des courbes. Thesis, Univ. Bordeaux (1999). Available from: http://www.dm.unibo.it/~borne/

  7. Casselman, W.: On representations of GL2 and the arithmetic of modular curves. In: Modular Functions of One Variable, II, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 349, pp. 107–141. Springer, Berlin (1973). Errata to On representations of GL2 and the arithmetic of modular curves. In: Modular Functions of One Variable, IV, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 476, pp. 148–149. Springer, Berlin (1975)

    Chapter  Google Scholar 

  8. Casselman, W.: The Hasse–Weil ζ-function of some moduli varieties of dimension greater than one. In: Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore, 1977. Proc. Sympos. Pure Math. Part 2, vol. XXXIII, pp. 141–163. Am. Math. Soc., Providence (1979)

    Chapter  Google Scholar 

  9. Clozel, L.: Nombre de points des variétés de Shimura sur un corps fini (d’aprés R. Kottwitz). Seminaire Bourbaki, vol. 1992/93. Asterisque No. 216 (1993), Exp. No. 766, 4, 121–149

    Google Scholar 

  10. Cohen, P.: On the coefficients of the transformation polynomials for the elliptic modular function. Math. Proc. Camb. Philos. Soc. 95, 389–402 (1984)

    Article  MathSciNet  Google Scholar 

  11. Deligne, P.: Variétés de Shimura. In: Automorphic Forms, Representations and L-Functions. Proc. Sympos. Pure Math. Part 2, vol. 33, pp. 247–290 (1979)

    Chapter  Google Scholar 

  12. Duflo, M., Labesse, J.-P.: Sur la formule des traces de Selberg. Ann. Sci. Ecole Norm. Super. (4) 4, 193–284 (1971)

    Article  MathSciNet  Google Scholar 

  13. Eichler, M.: The basis problem for modular forms and the traces of Hecke operators. In: Modular Functions of One Variable, I, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 320, pp. 1–36. Springer, Berlin (1973)

    Chapter  Google Scholar 

  14. Elkies, N.: Elliptic and modular curves over finite fields and related computational issues. In: Buell, D., Teitelbaum, J. (eds.) Computational Perspectives on Number Theory. AMS/IP Studies in Adv. Math., vol. 7, pp. 21–76 (1998)

    Chapter  Google Scholar 

  15. Elkies, N.: The Klein quartic in number theory, In: Levy, S. (ed.) The Eightfold Way: The Beauty of Klein’s Quartic Curve, pp. 51–102. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  16. Frey, G., Müller, M.: Arithmetic of modular curves and applications. Preprint (1998). Available: http://www.exp-math.uni-essen.de/zahlentheorie/preprints/Index.html

  17. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, Berlin (1991)

    MATH  Google Scholar 

  18. The GAP Group: GAP—Groups, algorithms, and programming. Version 4.4.10 (2007). http://www.gap-system.org

  19. Gelbart, S.: Elliptic curves and automorphic representations. Adv. Math. 21(3), 235–292 (1976)

    Article  MathSciNet  Google Scholar 

  20. Göb, N.: Computing the automorphism groups of hyperelliptic function fields. Preprint. Available: http://front.math.ucdavis.edu/math.NT/0305284

  21. Goppa, V.D.: Geometry and Codes. Kluwer, Amsterdam (1988)

    Book  Google Scholar 

  22. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    Book  Google Scholar 

  23. Hibino, T., Murabayashi, N.: Modular equations of hyperelliptic X0(N) and an application. Acta Arith. 82, 279–291 (1997)

    Article  MathSciNet  Google Scholar 

  24. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge Univ. Press, Cambridge (2003)

    Book  Google Scholar 

  25. Igusa, J.: On the transformation theory of elliptic functions. Am. J. Math. 81, 436–452 (1959)

    Article  MathSciNet  Google Scholar 

  26. Ihara, Y.: Some remarks on the number of rational points of algebraic curves over finite fields. J. Fac. Sci. Univ. Tokyo 28, 721–724 (1981)

    MathSciNet  MATH  Google Scholar 

  27. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Grad Texts, vol. 84. Springer, Berlin (1982)

    MATH  Google Scholar 

  28. Joyner, D., Ksir, A.: Modular representations on some Riemann-Roch spaces of modular curves X(N). In: Shaska, T. (ed.) Computational Aspects of Algebraic Curves. Lecture Notes in Computing. World Scientific, Singapore (2005)

    MATH  Google Scholar 

  29. Joyner, D., Ksir, A.: Decomposing representations of finite groups on Riemann-Roch spaces. Proc. Am. Math. Soc. 135, 3465–3476 (2007)

    Article  Google Scholar 

  30. Joyner, D., Ksir, A., Traves, W.: Automorphism groups of generalized Reed-Solomon codes. In: Shaska, T., Huffman, W.C., Joyner, D., Ustimenko, V. (eds.) Advances in Coding Theory and Cryptology. Series on Coding Theory and Cryptology, vol. 3. World Scientific, Singapore (2007)

    Google Scholar 

  31. Joyner, D., Shokranian, S.: Remarks on codes from modular curves: MAPLE applications. In: Joyner, D. (ed.) Coding Theory and Cryptography: From the Geheimschreiber and Enigma to Quantum Theory. Springer, Berlin (2000). Available at http://www.opensourcemath.org/books/cryptoday/cryptoday.html

    Chapter  Google Scholar 

  32. Khare, C., Prasad, D.: Extending local representations to global representations. Kyoto J. Math. 36, 471–480 (1996)

    Article  MathSciNet  Google Scholar 

  33. Knapp, A.: Elliptic Curves, Mathematical Notes. Princeton Univ. Press, Princeton (1992)

    Google Scholar 

  34. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Grad. Texts, vol. 97. Springer, Berlin (1984)

    MATH  Google Scholar 

  35. Kottwitz, R.: Shimura varieties and λ-adic representations. In: Automorphic Forms, Shimura Varieties, and L-functions, vol. 1, pp. 161–209. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  36. Kottwitz, R.: Points on Shimura varieties over finite fields. J. Am. Math. Soc. 5, 373–444 (1992)

    Article  MathSciNet  Google Scholar 

  37. Labesse, J.P.: Exposé VI. In: Boutot, J.-F., Breen, L., Gŕardin, P., Giraud, J., Labesse, J.-P., Milne, J.S., Soulé, C. (eds.) Variétés de Shimura et fonctions L. Publications Mathématiques de l’Université Paris VII [Mathematical Publications of the University of Paris VII], 6. Universite de Paris VII, U.E.R. de Mathematiques, Paris (1979)

    Google Scholar 

  38. Langlands, R.P.: Shimura varieties and the Selberg trace formula. Can. J. Math. XXIX(5), 1292–1299 (1977)

    Article  MathSciNet  Google Scholar 

  39. Langlands, R.P.: On the zeta function of some simple Shimura varieties. Can. J. Math. XXXI(6), 1121–1216 (1979)

    Article  MathSciNet  Google Scholar 

  40. Li, W.: Modular curves and coding theory: a survey. In: Contemp. Math. vol. 518, 301–314. AMS, Providence (2010). Available: http://www.math.cts.nthu.edu.tw/download.php?filename=630_0d16a302.pdf&dir=publish&title=prep2010-11-001

    Google Scholar 

  41. Lint, J., van der Geer, G.: Introduction to Coding Theory and Algebraic Geometry. Birkhäuser, Boston (1988)

    Book  Google Scholar 

  42. Lorenzini, D.: An Invitation to Arithmetic Geometry. Grad. Studies in Math. AMS, Providence (1996)

    Book  Google Scholar 

  43. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  44. Moreno, C.: Algebraic Curves over Finite Fields: Exponential Sums and Coding Theory. Cambridge Univ. Press, Cambridge (1994)

    Google Scholar 

  45. Narasimhan, R.: Complex Analysis of One Variable. Basel (1985)

    Book  Google Scholar 

  46. Nieddereiter, H., Xing, C.P.: Algebraic Geometry in Coding Theory and Cryptography. Princeton Univ. Press, Princeton (2009)

    Google Scholar 

  47. Ogg, A.: Elliptic curves with wild ramification. Am. J. Math. 89, 1–21 (1967)

    Article  MathSciNet  Google Scholar 

  48. Ogg, A.: Modular Forms and Dirichlet series. Benjamin, Elmsford (1969). See also his paper in Modular Functions of One Variable, I, Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972. Lecture Notes in Math., vol. 320, pp. 1–36. Springer, Berlin (1973)

    MATH  Google Scholar 

  49. Pellikaan, R., Shen, B.-Z., Van Wee, G.J.M.: Which linear codes are algebraic-geometric? IEEE Trans. Inf. Theory 37, 583–602 (1991). Available: http://www.win.tue.nl/math/dw/personalpages/ruudp/

    Article  MathSciNet  Google Scholar 

  50. Pretzel, O.: Codes and Algebraic Curves. Oxford Lecture Series, vol. 9. Clarendon, Oxford (1998)

    MATH  Google Scholar 

  51. Ritzenthaler, C.: Problèmes arithmétiques relatifs à certaines familles de courbes sur les corps finis. Thesis, Univ. Paris 7 (2003)

    Google Scholar 

  52. Ritzenthaler, C.: Action du groupe de Mathieu M11 sur la courbe modulaire X(11) en caractéristique 3. Masters thesis, Univ. Paris 6 (1998)

    Google Scholar 

  53. Ritzenthaler, C.: Automorphismes des courbes modulaires X(n) en caractristique p. Manuscr. Math. 109, 49–62 (2002)

    Article  Google Scholar 

  54. Rovira, J.G.: Equations of hyperelliptic modular curves. Ann. Inst. Fourier, Grenoble 41, 779–795 (1991)

    Article  MathSciNet  Google Scholar 

  55. The SAGE Group: SAGE: Mathematical software, Version 4.6. http://www.sagemath.org/

  56. Schoen, C.: On certain modular representations in the cohomology of algebraic curves. J. Algebra 135, 1–18 (1990)

    Article  MathSciNet  Google Scholar 

  57. Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)

    Book  Google Scholar 

  58. Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  59. Shimura, M.: Defining equations of modular curves. Tokyo J. Math. 18, 443–456 (1995)

    Article  MathSciNet  Google Scholar 

  60. Shokranian, S.: The Selberg-Arthur Trace Formula. Lecture Note Series, vol. 1503. Springer, Berlin (1992)

    MATH  Google Scholar 

  61. Shokranian, S., Shokrollahi, M.A.: Coding Theory and Bilinear Complexity. Scientific Series of the International Bureau, vol. 21. KFA Jülich (1994)

    MATH  Google Scholar 

  62. Shokrollahi, M.A.: Kapitel 9. In: Beitraege zur algebraischen Codierungs- und Komplexitaetstheorie mittels algebraischer Funkionenkoerper. Bayreuther mathematische Schriften, vol. 30, pp. 1–236 (1991)

    Google Scholar 

  63. Stepanov, S.: Codes on Algebraic Curves. Kluwer, New York (1999)

    Book  Google Scholar 

  64. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (1993)

    MATH  Google Scholar 

  65. Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes, Mathematics and Its Applications. Kluwer Academic, Dordrecht (1991)

    Book  Google Scholar 

  66. Tsfasman, M.A., Vladut, S.G., Nogin, D.: Algebraic Geometric Codes: Basic Notions. Math. Surveys. AMS, Providence (2007)

    Book  Google Scholar 

  67. Velu, J.: Courbes elliptiques munies d’un sous-groupe ℤ/nℤ×μ n . Bull. Soc. Math. France, Memoire (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Joyner .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Joyner, D., Kim, JL. (2011). Codes from Modular Curves. In: Selected Unsolved Problems in Coding Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8256-9_6

Download citation

Publish with us

Policies and ethics