Advertisement

Adaptive Particle Filter for Stable Distribution

  • H. F. de Campos Velho
  • H. C. Morais Furtado

Abstract

Particle filters are considered as the most robust method in the estimation theory. However, all techniques presented in the literature consider only cases where the data can be described by a probability distribution function (PDF) with all statistical moments well defined. The present chapter a novel particle filter is introduced for estimating a posteriori PDF using a Bayesian scheme. The key issue is to consider an adaptive likelihood function. The scheme generalizes the traditonal particle filter approaches. The scheme can be applied to inverse problem, control theory, image and signal processing, and data assimilation.

Keywords

Inverse Problem Probability Density Function Central Limit Theorem Data Assimilation Probability Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ja70]
    Jazwinski, A.H.: Stochastic Processes and Filtering Theory, Academic Press (1970). MATHGoogle Scholar
  2. [Ev07]
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, Springer Verlag (2007). MATHGoogle Scholar
  3. [BeMeBr00]
    Belyaev, K.P., Meyers, S., O’Brien, J.J.: Fokker–Planck equation application to data assimilation into hydrodynamic models. J. Math. Sci., 99, 1393 (2000). MathSciNetMATHCrossRefGoogle Scholar
  4. [BeTaBr01]
    Belyaev, K.P., Tanajura, C.A.S., O’Brien, J.J.: A data assimilation method used with an ocean circulation model and its application to the tropical Atlantic. Appl. Math. Modelling, 25, 655 (2001) MATHCrossRefGoogle Scholar
  5. [Ta87]
    Tarantola, A.: Inverse Problem Theory, Elsevier (1987). MATHGoogle Scholar
  6. [JaSo05]
    Jaipio, K., Somersalo, E.: Statistical and Computational Inverse Problems, Springer Verlag (2005). Google Scholar
  7. [Ts88]
    Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Statistical Physics, 52, 479 (1988). MathSciNetMATHCrossRefGoogle Scholar
  8. [Ts99]
    Tsallis, C.: Nonextensive statistics: theoretical, experimental and computational evidences and connections. Braz. J. Phys., 29, 1 (1999). CrossRefGoogle Scholar
  9. [RaRoRoBoSaCa01]
    Ramos, F.M., Rosa, R.R., Neto, C. Rodrigues, Bolzan, M.J.A., Sa, L.D.A., Campos Velho, H.F.: Nonextensive statistics and three-dimensional fully developed turbulence. Phys. A, 295, 250 (2001). MATHCrossRefGoogle Scholar
  10. [GoSaSm93]
    Gordon, N., Salmond, D., Smith, A.D.: Novel approach to nonlinear/non-Gaussian Bayes ian state estimation. IEE Proc., 140, 107 (1993). Google Scholar
  11. [ArMaGoCl02]
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE T. Signal Proces., 50, 174 (2002). CrossRefGoogle Scholar
  12. [Do98]
    Doucet, A.: On Sequential Simulation-Based Methods for Bayesian Filtering, Tech. Report: Departament of Engineering, University of Cambridge (CB21PZ Cambridge UK), 1998. Google Scholar
  13. [NaUeHi07]
    Nakano, S., Ueno, G., Higuchi, T.: Merging particle filter for sequential data assimilation. Nonlinear Proc. Geoph., 14, 395 (2007). CrossRefGoogle Scholar
  14. [ChKr04]
    Chorin, A.J., Krause, P.: Dimensional reduction for a Bayesian filter. Proc. of Nac. Acad. Sci., 101, 15013 (2004). MathSciNetMATHCrossRefGoogle Scholar
  15. [FuCaMa08]
    Furtado, H.C.M., Campos, H.F., Macau, E.E.M.: Data assimilation: particle filter and artificial neural networks. Journal of Physics. Conference Series (Online), 135, 012073 (2008). CrossRefGoogle Scholar
  16. [No05]
    Nolan, J.P.: Stable Distributions: Models for Heavy Tailed Data, Birkhäuser, Boston, MA (2005). Google Scholar
  17. [ScGuNr05]
    Schön, T.B., Gustafsson, F., Nordlund, P.-J.: Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE T. Signal Proces., 53, 2279 (2006). CrossRefGoogle Scholar
  18. [Sc06]
    Schön, T.B.: Estimation of Nonlinear Dynamic Systems: Theory and Applications, Dissertations no. 998 (Linköping Studies in Sciense and Tecnology), 2006. Google Scholar
  19. [Be98]
    Bertero, M., Boccacci, P.: Inverse Problems in Imaging, Institute of Physics (1998). MATHCrossRefGoogle Scholar
  20. [Pa89]
    Papoulis, A.: Probability and Statistics, Pearson Higher Education (1989). Google Scholar
  21. [TsQu07]
    Tsallis, C., Queiros, S.M.D.: Nonextensive statistical mechanics and central limit theorems I – Convolution of independent random variables and q-product, in Complexity, Metastability and Nonextensivity (CTNEXT 07) (Editors: S. Abe, H. Herrmann, P. Quarati, A. Rapisarda, and C. Tsallis), American Institute of Physics (2007). Google Scholar
  22. [Le09]
    Leeuwen, P.J.V.: Particle filtering in geophysical systems. Monthly Weather Review, 137, 4089 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • H. F. de Campos Velho
    • 1
  • H. C. Morais Furtado
    • 1
  1. 1.Instituto Nacional de Pesquisas Espaciais (INPE)São José dos CamposBrazil

Personalised recommendations