Advertisement

Convergence of a Discretization Scheme Based on the Characteristics Method for a Fluid–Rigid System

  • J. San Martín
  • J.-F. Scheid
  • L. Smaranda

Abstract

In this chapter, we present our latest results concerning the convergence of a numerical method to discretize the equations modeling the motion of a rigid solid immersed into a viscous incompressible fluid using the characteristics technique.

Keywords

Rigid Body Stokes Equation Direct Numerical Simulation Galerkin Method Element Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AcGu00]
    Achdou, Y., Guermond, J.-L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal., 37, 799–826 (2000). MathSciNetMATHCrossRefGoogle Scholar
  2. [Ar92]
    Arnold, V.: Ordinary Differential Equations, Springer-Verlag, Berlin (1992). Google Scholar
  3. [FoNo99]
    Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math., 7, 105–131 (1999). MathSciNetMATHGoogle Scholar
  4. [Ga01]
    Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math., 9, 123–156 (2001). MathSciNetMATHGoogle Scholar
  5. [GiRa79]
    Girault, V., Raviart, P.-A.: Finite Element Approximation of the Navier–Stokes Equations, Springer-Verlag, Berlin (1979). MATHCrossRefGoogle Scholar
  6. [GPHJP00]
    Glowinski, R., Pan, T.-W., Hesla, T., Joseph, D., Périaux, J.: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Engrg., 184, 241–267 (2000). MathSciNetMATHCrossRefGoogle Scholar
  7. [GPHJP01]
    Glowinski, R., Pan, T.-W., Hesla, T.I., Joseph, D.D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys., 169, 363–426 (2001). MathSciNetMATHCrossRefGoogle Scholar
  8. [LeTa08]
    Legendre, G., Takahashi, T.: Convergence of a Lagrange–Galerkin method for a fluid–rigid body system in ALE formulation. M2AN Math. Model. Numer. Anal., 42, 609–644 (2008). MathSciNetMATHCrossRefGoogle Scholar
  9. [Ma99]
    Maury, B.: Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys., 156, 325–351 (1999). MathSciNetMATHCrossRefGoogle Scholar
  10. [MoGl97]
    Maury, B., Glowinski, R.: Fluid-particle flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math., 324, 1079–1084 (1997). MathSciNetMATHGoogle Scholar
  11. [OsSe88]
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys., 79, 12–49 (1988). MathSciNetMATHCrossRefGoogle Scholar
  12. [Pe02]
    Peskin, C.S.: The immersed boundary method. Acta Numer., 11, 479–517 (2002). MathSciNetMATHCrossRefGoogle Scholar
  13. [Pi82]
    Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math., 38, 309–332 (1982). MathSciNetMATHCrossRefGoogle Scholar
  14. [QuVa94]
    Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin (1994). MATHGoogle Scholar
  15. [SMSS10a]
    San Martín, J., Scheid, J.-F., Smaranda, L.: A time discretization scheme of a characteristics method for a fluid–rigid system with discontinuous density. C. R. Math. Acad. Sci. Paris, 348, 935–939 (2010). MathSciNetMATHGoogle Scholar
  16. [SMSS10b]
    San Martín, J., Scheid, J.-F., Smaranda, L.: A modified Lagrange–Galerkin method for a fluid–rigid system with discontinuous density. Submitted to Numer. Math., (2010). Google Scholar
  17. [SMSTT04]
    San Martín, J., Scheid, J.-F., Takahashi, T., Tucsnak, M.: Convergence of the Lagrange–Galerkin method for a fluid–rigid system. C. R. Math. Acad. Sci. Paris, 339, 59–64 (2004). MathSciNetMATHGoogle Scholar
  18. [SMSTT05]
    San Martín, J., Scheid, J.-F., Takahashi, T., Tucsnak, M.: Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid–rigid system. SIAM J. Numer. Anal., 43, 1536–1571 (2005). MathSciNetMATHCrossRefGoogle Scholar
  19. [SMST09]
    San Martín, J., Smaranda, L., Takahashi, T.: Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time. J. Comput. Appl. Math., 230, 521–545 (2009). MathSciNetMATHCrossRefGoogle Scholar
  20. [Su88]
    Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math., 53, 459–483 (1988). MathSciNetMATHCrossRefGoogle Scholar
  21. [Te83]
    Temam, R.: Problèmes mathématiques en plasticité, Gauthier-Villars, Montrouge (1983). MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Universidad de ChileSantiagoChile
  2. 2.Université Henri PoincaréNancyFrance
  3. 3.Universitatea din PiteştiPiteştiRomania

Personalised recommendations