Skip to main content

A Self-Consistent Monte Carlo Validation Procedure for Hadron Cancer Therapy Simulation

  • Chapter
Book cover Integral Methods in Science and Engineering

Abstract

Accelerated heavy ions (3He, 12C, among others) nowadays provide an advanced non-invasive procedure for radiotherapy of tumors with risky or impossible access, henceforth called Hadron Cancer Therapy (Kraft 1990), (Durante 2008). Moreover heavy-ion beams naturally optimize the physical depth-dose profile (known as Bragg curve) with an increased relative biological efficiency in the target volume that as a consequence minimizes damage in the healthy tissue. A further advantage of heavy ions over protons is the positron production from a by-product of nuclear reactions and subsequent decays (Pshenichnov et al. 2005), (Pshenichnov et al. 2006). Thus positron emission tomography (PET) allows for dose verification in real-time. The raster-scan technology was developed at the GSI facility (Gademann et al. 1990), (Kraft et al. 1991) and today is, and in the close future will be implemented in several cancer treatment centers all over Europe. While treatment planning in the pioneer stage of the developments was done by experiments with phantoms, in the consolidation phase these may be substituted by computerized treatment planning engines that make use of physical and radio-biological data obtained at GSI and other places. The state of the art so far permits us to treat skull base tumors and tumors close to the spinal chord (Debus et al. 2000), (Durante and Loeffler 2010), (Schardt et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostinelli, S., Allison, J., Amako, K. et al.: GEANT4—a simulation toolkit. Nucl. Instr. Meth. Phys. Res. A, 506, 250–303 (2003).

    Article  Google Scholar 

  2. Allison, J. et al.: Geant developments and applications. IEEE Trans. Nucl. Sci., 53, n. 1, Part 2, 270–278 (2006).

    Article  Google Scholar 

  3. Cygler, J.E., Lochrin, C., Daskalov, G.M., Howard, M., Zohr, R., Esche, B., Eapen, L., Grimard, L., Caudrelier, J.M.: Clinical use of a commercial Monte Carlo treatment planning system for electron beams. Phys. Med. Biol., 50, 1029–1034 (2005).

    Article  Google Scholar 

  4. Debus, J., Haberer, T., Schulze-Ertner, D., Jäkel, O., Wenz, F., Enghardt, W., Schlegel, W., Kraft, G., Wannenmacher, M.: Fractionated carbon ion irradiation of skull base tumors at GSI. First clinical results and future perspectives. Strahlenther. Onkol., 176, 211–216 (2000).

    Article  Google Scholar 

  5. Ding, M., Li, J., Deng, J., Fourkai, E., Ma, C.-M.: Dose correlation for thoracic motion in radiation therapy of breast cancer. Med. Phys., 30, 2520–2529 (2003).

    Article  Google Scholar 

  6. Durante, M.: Focus on heavy ions in biophysics and medical physics. New J. Phys., 10, 075002 (2008).

    Article  Google Scholar 

  7. Durante, M., Loeffler, J.S.: Charged particles in radiation oncology. Nat. Rev. Clin. Oncol., 7, 37–43 (2010).

    Article  Google Scholar 

  8. Fraass, B.A., Smathers, J., Deye, J.: Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo calculation algorithms for megavoltage external beam radiation therapy. Med. Phys., 30, 3206–3216 (2003).

    Article  Google Scholar 

  9. Gademann, G., Hartmann, G.H., Kraft, G., Lorenz, W.-J., Wannenmacher M.: The medical heavy ion therapy project at the Gesellschaft für Schwerionenforschung facility in Darmstadt. Strahlenther. Onkol., 166, 34–39 (1990).

    Google Scholar 

  10. Jeraj, R., Keall, P.J., Siebers, J.V.: The effect of dose calculation accuracy on inverse treatment planning. Phys. Med. Biol., 47, 391–407 (2002).

    Article  Google Scholar 

  11. Keall, P.J., Siebers, J.V., Arnfield, M., Kim, J.O., Mohan, R.: Monte Carlo dose calculations for dynamic IMRT treatments. Phys. Med. Biol., 46, 929–941 (2001).

    Article  Google Scholar 

  12. Kraft, G.: Radiobiological and physical basis for radiotherapy with protons and heavier ions. Strahlenther. Onkol., 166, 10–13 (1990).

    Google Scholar 

  13. Kraft, G., Becher, W., Blasche, K., Böhne, D., Fischer, B., Gademann, G., Geissel, H., Haberer, Th., Klabunde, J., Kraft-Weyrather, W., Langenbeck, B., Mänzenberg, G., Ritter, S., Rösch, W., Schardt, D., Stelzer, H., Schwab, Th.: The heavy ion therapy project at GSI. Nucl. Tracks Radiat. Meas., 19, 911 (1991).

    Article  Google Scholar 

  14. Kraft, G.: Heavy-ion therapy at GSI. Europhys. News, 25, n. 4, 81 (1994).

    Google Scholar 

  15. Kraft, G., Arndt, U., Becher, W., Schardt, D., Stelzer, H., Weber, U.: Heavy ion therapy at GSI. Th. Archinal Nucl. Instr. and Meth. in Phys. Res. A, 367, 66 (1995).

    Article  Google Scholar 

  16. Liu, H.H., Verhaegen, F., Dong, L.: A method of simulating dynamic multileaf collimators using Monte Carlo techniques for intensity-modulated radiation therapy. Phys. Med. Biol., 46, 2283–2289 (2001).

    Article  Google Scholar 

  17. Mohan, R., Antolak, J., Hendee, W.R.: Monte Carlo techniques should replace analytical methods for estimating dose distributions in radiotherapy treatment planning. Med. Phys., 28, 123–126 (2001).

    Article  Google Scholar 

  18. Pshenichnov, I.A., Mishustin, I.N., Greiner, W.: Neutrons from fragmentation of light nuclei in tissue-like media: a study with GEANT4 toolkit. Phys. Med. Biol., 50, 5493–5507 (2005).

    Article  Google Scholar 

  19. Pshenichnov, I.A., Mishustin, I.N., Greiner, W.: Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys. Med. Biol., 51, 6099–6112 (2006).

    Article  Google Scholar 

  20. Schardt, D., Elsässer, T., Schulz-Ertner, D.: Heavy-ion tumor therapy: physical and radiobiological benefits. Rev. Mod. Phys., 82, 383–425 (2010).

    Article  Google Scholar 

  21. Verhaegen, F., Liu, H.H.: Incorporating dynamic collimator motion in Monte Carlo simulations: an application in modelling a dynamic wedge. Phys. Med. Biol., 46, 287–296 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. E. J. Bodmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burigo, L.N., Hadjimichef, D., Bodmann, B.E.J. (2011). A Self-Consistent Monte Carlo Validation Procedure for Hadron Cancer Therapy Simulation. In: Constanda, C., Harris, P. (eds) Integral Methods in Science and Engineering. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-8238-5_3

Download citation

Publish with us

Policies and ethics