A Self-Consistent Monte Carlo Validation Procedure for Hadron Cancer Therapy Simulation

  • L. N. Burigo
  • D. Hadjimichef
  • B. E. J. Bodmann


Accelerated heavy ions (3He, 12C, among others) nowadays provide an advanced non-invasive procedure for radiotherapy of tumors with risky or impossible access, henceforth called Hadron Cancer Therapy (Kraft 1990), (Durante 2008). Moreover heavy-ion beams naturally optimize the physical depth-dose profile (known as Bragg curve) with an increased relative biological efficiency in the target volume that as a consequence minimizes damage in the healthy tissue. A further advantage of heavy ions over protons is the positron production from a by-product of nuclear reactions and subsequent decays (Pshenichnov et al. 2005), (Pshenichnov et al. 2006). Thus positron emission tomography (PET) allows for dose verification in real-time. The raster-scan technology was developed at the GSI facility (Gademann et al. 1990), (Kraft et al. 1991) and today is, and in the close future will be implemented in several cancer treatment centers all over Europe. While treatment planning in the pioneer stage of the developments was done by experiments with phantoms, in the consolidation phase these may be substituted by computerized treatment planning engines that make use of physical and radio-biological data obtained at GSI and other places. The state of the art so far permits us to treat skull base tumors and tumors close to the spinal chord (Debus et al. 2000), (Durante and Loeffler 2010), (Schardt et al. 2010).


Energy Deposition Relative Biological Effectiveness Macroscopic Cross Section Positron Production Bragg Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ago03]
    Agostinelli, S., Allison, J., Amako, K. et al.: GEANT4—a simulation toolkit. Nucl. Instr. Meth. Phys. Res. A, 506, 250–303 (2003). CrossRefGoogle Scholar
  2. [All06]
    Allison, J. et al.: Geant developments and applications. IEEE Trans. Nucl. Sci., 53, n. 1, Part 2, 270–278 (2006). CrossRefGoogle Scholar
  3. [Cyg05]
    Cygler, J.E., Lochrin, C., Daskalov, G.M., Howard, M., Zohr, R., Esche, B., Eapen, L., Grimard, L., Caudrelier, J.M.: Clinical use of a commercial Monte Carlo treatment planning system for electron beams. Phys. Med. Biol., 50, 1029–1034 (2005). CrossRefGoogle Scholar
  4. [Deb00]
    Debus, J., Haberer, T., Schulze-Ertner, D., Jäkel, O., Wenz, F., Enghardt, W., Schlegel, W., Kraft, G., Wannenmacher, M.: Fractionated carbon ion irradiation of skull base tumors at GSI. First clinical results and future perspectives. Strahlenther. Onkol., 176, 211–216 (2000). CrossRefGoogle Scholar
  5. [Din03]
    Ding, M., Li, J., Deng, J., Fourkai, E., Ma, C.-M.: Dose correlation for thoracic motion in radiation therapy of breast cancer. Med. Phys., 30, 2520–2529 (2003). CrossRefGoogle Scholar
  6. [Dur08]
    Durante, M.: Focus on heavy ions in biophysics and medical physics. New J. Phys., 10, 075002 (2008). CrossRefGoogle Scholar
  7. [Dur10]
    Durante, M., Loeffler, J.S.: Charged particles in radiation oncology. Nat. Rev. Clin. Oncol., 7, 37–43 (2010). CrossRefGoogle Scholar
  8. [Fra03]
    Fraass, B.A., Smathers, J., Deye, J.: Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo calculation algorithms for megavoltage external beam radiation therapy. Med. Phys., 30, 3206–3216 (2003). CrossRefGoogle Scholar
  9. [Gad90]
    Gademann, G., Hartmann, G.H., Kraft, G., Lorenz, W.-J., Wannenmacher M.: The medical heavy ion therapy project at the Gesellschaft für Schwerionenforschung facility in Darmstadt. Strahlenther. Onkol., 166, 34–39 (1990). Google Scholar
  10. [Jer02]
    Jeraj, R., Keall, P.J., Siebers, J.V.: The effect of dose calculation accuracy on inverse treatment planning. Phys. Med. Biol., 47, 391–407 (2002). CrossRefGoogle Scholar
  11. [Kea01]
    Keall, P.J., Siebers, J.V., Arnfield, M., Kim, J.O., Mohan, R.: Monte Carlo dose calculations for dynamic IMRT treatments. Phys. Med. Biol., 46, 929–941 (2001). CrossRefGoogle Scholar
  12. [Kra90]
    Kraft, G.: Radiobiological and physical basis for radiotherapy with protons and heavier ions. Strahlenther. Onkol., 166, 10–13 (1990). Google Scholar
  13. [Kra91]
    Kraft, G., Becher, W., Blasche, K., Böhne, D., Fischer, B., Gademann, G., Geissel, H., Haberer, Th., Klabunde, J., Kraft-Weyrather, W., Langenbeck, B., Mänzenberg, G., Ritter, S., Rösch, W., Schardt, D., Stelzer, H., Schwab, Th.: The heavy ion therapy project at GSI. Nucl. Tracks Radiat. Meas., 19, 911 (1991). CrossRefGoogle Scholar
  14. [Kra94]
    Kraft, G.: Heavy-ion therapy at GSI. Europhys. News, 25, n. 4, 81 (1994). Google Scholar
  15. [Kra95]
    Kraft, G., Arndt, U., Becher, W., Schardt, D., Stelzer, H., Weber, U.: Heavy ion therapy at GSI. Th. Archinal Nucl. Instr. and Meth. in Phys. Res. A, 367, 66 (1995). CrossRefGoogle Scholar
  16. [Liu01]
    Liu, H.H., Verhaegen, F., Dong, L.: A method of simulating dynamic multileaf collimators using Monte Carlo techniques for intensity-modulated radiation therapy. Phys. Med. Biol., 46, 2283–2289 (2001). CrossRefGoogle Scholar
  17. [Moh01]
    Mohan, R., Antolak, J., Hendee, W.R.: Monte Carlo techniques should replace analytical methods for estimating dose distributions in radiotherapy treatment planning. Med. Phys., 28, 123–126 (2001). CrossRefGoogle Scholar
  18. [Psh05]
    Pshenichnov, I.A., Mishustin, I.N., Greiner, W.: Neutrons from fragmentation of light nuclei in tissue-like media: a study with GEANT4 toolkit. Phys. Med. Biol., 50, 5493–5507 (2005). CrossRefGoogle Scholar
  19. [Psh06]
    Pshenichnov, I.A., Mishustin, I.N., Greiner, W.: Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys. Med. Biol., 51, 6099–6112 (2006). CrossRefGoogle Scholar
  20. [Sch10]
    Schardt, D., Elsässer, T., Schulz-Ertner, D.: Heavy-ion tumor therapy: physical and radiobiological benefits. Rev. Mod. Phys., 82, 383–425 (2010). CrossRefGoogle Scholar
  21. [Ver01]
    Verhaegen, F., Liu, H.H.: Incorporating dynamic collimator motion in Monte Carlo simulations: an application in modelling a dynamic wedge. Phys. Med. Biol., 46, 287–296 (2001). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. N. Burigo
    • 1
  • D. Hadjimichef
    • 1
  • B. E. J. Bodmann
    • 1
  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations