Numerical Experiments for Mammary Adenocarcinoma Cell Progression

  • C. L. Jorcyk
  • M. Kolev
  • B. Zubik-Kowal


We have analyzed cell culture and animal and mathematical models for the investigation of mammary carcinoma progression. The development and characterization of a progressive series of C3(1)/Tag mammary carcinoma cell lines have been described by means of integro-differential equations of Boltzmann type. The numerical approximations to the solutions of the proposed mathematical model have shown a good agreement with the laboratory data of the tumor growth rates.


Invasive Lobular Carcinoma Mammary Adenocarcinoma Normal Mammary Tissue Mammary Adenocarcinoma Cell Tumorigenic Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ArBeAnLa03]
    Arlotti, L., Bellomo, N., De Angelis, E., Lachowicz, M.: Generalized Kinetic Models in Applied Sciences, Series on Advances in Mathematics for Applied Sciences, 64, World Scientific Publishing Co., Inc., River Edge, NJ, xii+199 (2003). Google Scholar
  2. [ArBaClEl04]
    Arpino, G., Bardou, V.J., Clark, G.M., Elledge, R.M.: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Research, 6, 149–156 (2004). CrossRefGoogle Scholar
  3. [BeFo94]
    Bellomo, N., Forni, G.: Dynamics of tumor interaction with the host immune system. Math. Comput. Modelling, 20, 107–122 (1994). MATHCrossRefGoogle Scholar
  4. [BeBe06]
    Bellomo, N., Bellouquid, A.: On the mathematical kinetic theory of active particles with discrete states. The derivation of macroscopic equations. Math. Comput. Modelling, 44, 397–404 (2006). MathSciNetMATHCrossRefGoogle Scholar
  5. [BeSl06]
    Bellomo, N., Sleeman, B.: Preface in: Multiscale Cancer Modelling. Comput. Math. Meth. Med., (special issue) 20, 67–70 (2006). MathSciNetCrossRefGoogle Scholar
  6. [BeMa06]
    Bellomo, N., Maini, P.: Preface in: Cancer Modelling (II). Math. Models Methods Appl. Sci., (special issue) 16, n. 7b, iii–vii (2006). MathSciNetGoogle Scholar
  7. [Be07]
    Bellomo, N.: Modelling Complex Living Systems, Birkhäuser, Boston (2007). Google Scholar
  8. [BeLiMa08]
    Bellomo, N., Li, N.K., Maini, P.K.: On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Models Methods Appl. Sci., 18, 593–646 (2008). MathSciNetMATHCrossRefGoogle Scholar
  9. [BeDe08]
    Bellomo, N., Delitala, M.: From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Physics of Life Reviews, 5, 183–206 (2008). CrossRefGoogle Scholar
  10. [BeDe06]
    Bellouquid, A., Delitala, M.: Modelling Complex Biological Systems – A Kinetic Theory Approach, Birkhäuser, Boston (2006). Google Scholar
  11. [BCF]
    Breast Cancer Facts & Figures 2009–2010. American Cancer Society, Inc., Atlanta. Google Scholar
  12. [Ca02]
    Calvo, A., Xiao, N., Kang, J., Best, C.J.M., Leiva, I., Emmert-Buck, M.R., Jorcyk, C., Green, J.E.: Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Research, 62, 5325–5335 (2002). Google Scholar
  13. [CoChLe94]
    Cox, L.A., Chen, G., Lee, E.Y.: Tumor suppressor genes and their roles in breast cancer. Breast Cancer Research Treat, 32, 19–38 (1994). CrossRefGoogle Scholar
  14. [AnLo08]
    De Angelis, E., Lodz, B.: On the kinetic theory for active particles: A model for tumor-immune system competition. Math. Comput. Modelling, 47, 196–209 (2008). MathSciNetMATHCrossRefGoogle Scholar
  15. [LiSaBe07]
    De Lillo, S., Salvatori, M.C., Bellomo, N.: Mathematical tools of the kinetic theory of active particles with some reasoning on the modelling progression and heterogeneity. Math. Comput. Modelling, 45, 564–578 (2007). MathSciNetMATHCrossRefGoogle Scholar
  16. [DrKoMaZu10]
    Drucis, K., Kolev, M., Majda, W., Zubik-Kowal, B.: Nonlinear modeling with mammographic evidence of carcinoma, Nonlinear Anal. Real World Appl., 11, 4326–4334 (2010). MathSciNetMATHCrossRefGoogle Scholar
  17. [DyBuWhHaH89]
    Dyson, N., Buchkovich, K., Whyte, P., Harlow, E.: The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell, 58, 249–255 (1989). CrossRefGoogle Scholar
  18. [Ge00]
    Green, J.E., Shibata, M., Yoshidome, K., Liu, M., Jorcyk, C.L., Anver, M.R., Wigginton, J.M., Wiltrout, R., Shibata, E., Kaczmarczyk, S., Wang, W., Liu, Z., Calvo, A., Couldrey, C.: The C3(1)/SV40 T-antigen transgenic mouse model of mammary carncer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene, 19, 1020–1027 (2000). CrossRefGoogle Scholar
  19. [H03]
    Holzer, R.G., MacDougall, C., Cortright, G., Atwood, K., Green, J.E., Jorcyk, C.L.: Development and characterization of a progressive series of mammary adenocarcinoma cell lines derived from the C3(1)/SV40 large T-antigen transgenic mouse model. Breast Cancer Research Treat, 77, 65–76 (2003). CrossRefGoogle Scholar
  20. [Ja09]
    Jackiewicz, Z., Jorcyk, C.L., Kolev, M., Zubik-Kowal, B.: Correlation between animal and mathematical models for prostate cancer progression. Comput. Math. Methods Med., 10, 241–252 (2009). MathSciNetCrossRefGoogle Scholar
  21. [JaSe92]
    Jäger, E., Segel, L.: On the distribution of dominance in a population of interacting anonymous organisms, SIAM J. Appl. Math., 52, 1442–1468 (1992). MathSciNetMATHCrossRefGoogle Scholar
  22. [Jo98]
    Jorcyk, C.L., Liu, M.L., Shibata, M.A., Maroulakou, I.G., Komschlies, K.L., McPhaul, M.J., Reseau, J.H., Green, J.E.: Development and characterization of a mouse prostate adenocarcinoma cell line: ductal formation determined by extracellular matrix. Prostate, 34, 10–22 (1998). CrossRefGoogle Scholar
  23. [Ko05]
    Kolev, M.: A mathematical model of cellular immune response to leukemia. Math. Comput. Modelling, 41, 1071–1081 (2005). MathSciNetMATHCrossRefGoogle Scholar
  24. [Ku97]
    Kuby, J.: Immunology, 3rd edition, W.H. Freeman, New York (1997). Google Scholar
  25. [LyWhFa00]
    Lydyard, P.M., Whelan, A., Fanger, M.W.: Instant Notes in Immunology, BIOS Scientific Publishers Ltd., Oxford (2000). Google Scholar
  26. [Ma94]
    Maroulakou, I.G., Anver, M., Garrett, L., Green, J.E.: Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion protein. Proc. Natl. Acad. Sci. USA, 91, 11236–11240 (1994). CrossRefGoogle Scholar
  27. [M9i2]
    Mietz, J.A., Unger, T., Huibregtse, J.M., Howly, P.M.: The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T antigen and by HPV-16 E6 oncoprotein. EMBO J., 11, 5013–5020 (1992). Google Scholar
  28. [Os91]
    Osborne, R.J., Merlo, G.R., Mitsudomi, T., Venesio, T., Liscia, D.S., Cappa, A.P., Chiba, I., Takahashi, T., Nau, M.M., Callahan, R., et al.: Mutations in the p53 gene in primary human breast cancers. Cancer Research, 51, 6194–6198 (1991). Google Scholar
  29. [Pa83]
    Parker, M.G.R., White, H., Hurst, M., Needham, M., Tilly, R.: Prostatic steroid-binding protein: isolation and characterization of C3 genes. J. Biol. Chem., 258, 12–15 (1983). Google Scholar
  30. [ScVa10]
    Schmid, M.C., Varner, J.A.: Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation. Journal of Oncology, 1–10 (2010). Google Scholar
  31. [SoshGrJo02]
    Soares, C.R., Shibata, M.A., Green, J.E., Jorcyk, C.L.: Development of PIN and prostate adenocarcinoma cell lines: a model system for multistage tumor progression. Neoplasia, 4, 112–20 (2002). CrossRefGoogle Scholar
  32. [Yo98]
    Yoshidome, K., Shibata, M., Maroulakou, I.G., Liu, M., Jorcyk, C.L., Gold, L.G., Welch, V.N., Green, J.E.: Genetic alterations in the development of mammary and prostate cancer in the C3(1)/Tag transgenic mouse model. Int. J. Oncol., 12, 449–453 (1998). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Boise State UniversityBoiseUSA
  2. 2.University of Warmia and MazuryOlsztynPoland

Personalised recommendations