Analytic Theory of L-Functions for GLn

  • J. W. Cogdell


The purpose of this chapter is to describe the analytic theory of L-functions for cuspidal automorphic representations of GL n over a global field. There are two approaches to L-functions of GL n : via integral representations or through analysis of Fourier coefficients of Eisenstein series. In this chapter we will discuss the theory via integral representations.


Modular Form Eisenstein Series Cusp Form Automorphic Form Vertical Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.W. Cogdell, Notes on L-functions for GL n. ICTP Lectures Notes, to appear.Google Scholar
  2. [2]
    J.W. Cogdell, Langlands conjectures for GLn, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 229–249 (this volume).Google Scholar
  3. [3]
    J.W. Cogdell, Dual groups and Langlands functoriality, in J. Bernstein and S. Gelbart, eds., Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 251–269 (this volume).Google Scholar
  4. [4]
    J.W. Cogdell, H. Kim, I.I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GLN, Publ. Math. IRES, 93(2001), 5–30.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J.W. Cogdell and I.I. Piatetski-Shapiro, Converse theorems for GL n, Publ. Math. IHES 79(1994), 157–214.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    J.W. Cogdell and I.I. Piatetski-Shapiro, Converse theorems for GL n, II J. reine angew. Math., 507(1999), 165–188.MathSciNetMATHGoogle Scholar
  7. [7]
    J.W. Cogdell and I.I. Piatetski-Shapiro, Converse theorems for GL n and their applications to liftings. Cohomology of Arithmetic Groups, Automorphic Forms, and L-functions, Mumbai 1998, Tata Institute of Fundamental Research, Narosa, 2001, 1–34.Google Scholar
  8. [8]
    J.W. Cogdell and I.I. Piatetski-Shapiro, Derivatives and L-functions for GL n. The Heritage of B. Moishezon, IMCP, to appear.Google Scholar
  9. [9]
    J.W. Cogdell and I.I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions. Contributions to Automorphic Forms, Geometry and Number Theory (Shalikafest 2002), H. Hida, D. Ramakrishnan, and F. Shahidi, eds., Johns Hopkins University Press, Baltimore, to appear.Google Scholar
  10. [10]
    D. Flath, Decomposition of representations into tensor products, Proc. Sympos. Pure Math., 33, part 1, (1979), 179–183.MathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. (4) 11(1978), 471–542.MathSciNetMATHGoogle Scholar
  12. [12]
    S. Gelbart and F. Shahidi, Boundedness of automorphic L-functions in vertical strips, J. Amer. Math. Soc., 14(2001), 79–107.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    I.M. Gelfand, M.I. Graev, and I.I. Piatetski-Shapiro, Representation Theory and Automorphic Functions, Academic Press, San Diego, 1990.Google Scholar
  14. [14]
    I.M. Gelfand and D.A. Kazhdan, Representations of GL(n, K) where K is a local field, in Lie Groups and Their Representations, edited by I.M. Gelfand. John Wiley & Sons, New York-Toronto, 1971, 95–118.Google Scholar
  15. [15]
    R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Springer Lecture Notes in Mathematics, No.260, Springer-Verlag, Berlin, 1972.CrossRefMATHGoogle Scholar
  16. [16]
    M. Harris and R. Taylor, On the Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Math Studies 151, Princeton University Press, 2001.Google Scholar
  17. [17]
    E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktion-algleichung, Math. Ann., 112(1936), 664–699.MathSciNetCrossRefGoogle Scholar
  18. [18]
    E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959.MATHGoogle Scholar
  19. [19]
    G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent Math., 139(2000), 439–455.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    H. Jacquet, Automorphic Forms on GL(2), II, Springer Lecture Notes in Mathematics No.278, Springer-Verlag, Berlin, 1972.Google Scholar
  21. [21]
    H. Jacquet and R.P. Langlands, Automorphic Forms on GL(2), Springer Lecture Notes in Mathematics No. 114, Springer Verlag, Berlin, 1970.MATHGoogle Scholar
  22. [22]
    H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Automorphic forms on GL(3), I & II, Ann. Math. 109(1979), 169–258.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math., 105(1983), 367–464.MathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Conducteur des représentations du groupe linéaire. Math. Ann., 256(1981), 199–214.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations, Amer. J. Math. I: 103(1981), 499–588; II: 103(1981), 777–815.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    H. Jacquet and J. Shalika, A lemma on highly ramified ε-factors, Math. Ann., 271(1985), 319–332.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    H. Jacquet and J. Shalika, Rankin-Selberg convolutions: Archimedean theory, in Festschrift in Honor of I.I. Piatetski-Shapiro, Part I, Weizmann Science Press, Jerusalem, 1990, 125–207.Google Scholar
  28. [28]
    S. Kudla, The local Langlands correspondence: the non-Archimedean case, Proc. Sympos. Pure Math., 55, part 2, (1994), 365–391.MathSciNetCrossRefGoogle Scholar
  29. [29]
    R.P. Langlands, Euler Products, Yale Univ. Press, New Haven, 1971.MATHGoogle Scholar
  30. [30]
    R.P. Langlands On the classification of irreducible representations of real algebraic groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, AMS Mathematical Surveys and Monographs, No.31, 1989, 101–170.Google Scholar
  31. [31]
    I.I. Piatetski-Shapiro, Euler Subgroups, in Lie Groups and Their Representations, edited by I.M. Gelfand. John Wiley & Sons, New York-Toronto, 1971, 597–620.Google Scholar
  32. [32]
    I.I. Piatetski-Shapiro, Multiplicity one theorems, Proc. Sympos. Pure Math., 33, Part 1 (1979), 209–212.MathSciNetCrossRefGoogle Scholar
  33. [33]
    R.A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions, I and II, Proc. Cambridge Phil. Soc., 35(1939), 351–372.Google Scholar
  34. [34]
    A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43(1940), 47–50.MathSciNetGoogle Scholar
  35. [35]
    F. Shahidi, Functional equation satisfied by certain L-functions. Compositio Math., 37(1978), 171–207.MathSciNetMATHGoogle Scholar
  36. [36]
    F. Shahidi, On non-vanishing of L-functions, Bull. Amer. Math. Soc, N.S., 2(1980), 462–464.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    F. Shahidi, On certain L-functions. Amer. J. Math., 103(1981), 297–355.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    F. Shahidi, Fourier Transforms of Intertwining Operators and Plancherel Measures For GL(n). Amer. J. Math., 106(1984), 67–111.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    F. Shahidi Local coefficients as Artin factors for real groups. Duke Math. J., 52(1985), 973–1007.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L-functions. Ann. of Math., 127(1988), 547–584.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups. Ann. of Math., 132(1990), 273–330.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    J. Shalika, The multiplicity one theorem for GL(n), Ann. Math. 100(1974), 171–193.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    T. Shintani, On an explicit formula for class-1 “Whittaker functions” on GLn over-adic fields. Proc. Japan Acad. 52(1976), 180–182.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    E. Stade Mellin transforms of G L (n, ℝ) Whittaker functions, Amer. J. Math. 123(2001), 121–161.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    E. Stade, Archimedean L-factors on GL(nGL(n) and generalized Barnes integrals, Israel J. Math. 127(2002), 201–219.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    J. Tate, Fourier Analysis in Number Fields and Hecke’s Zeta-Functions (Thesis, Princeton, 1950), in Algebraic Number Theory, edited by J.W.S. Cassels and A. Frolich, Academic Press, London, 1967, 305–347.Google Scholar
  47. [47]
    J. Tate, Number theoretic background, Proc. Symp. Pure Math., 33, part 2, 3–26.Google Scholar
  48. [48]
    A. Weil Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 168(1967), 149–156.MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    A. Zelevinsky, Induced representations of reductive p-adic groups, II. Irreducible representations of GL(n), Ann. scient. Éc. Norm. Sup., 4e série, 13(1980), 165–210.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • J. W. Cogdell

There are no affiliations available

Personalised recommendations