Advertisement

Spectral Theory and the Trace Formula

  • Daniel Bump

Abstract

We give an account of a portion of the spectral theory ΓSL(2, ℝ), particularly the Selberg trace formula, emphasizing ideas from representation theory. For simplicity, we will treat the trace formula only in the case of a compact quotient. The last section is of a different nature, intended to show a simple application of the trace formula to a lifting problem.

Keywords

Irreducible Representation Analytic Continuation Spectral Theory Eisenstein Series Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Arthur, The trace formula and Hecke operators, in K. E. Aubert, E. Bombieri and D. Goldfeld, eds., Number Theory, Trace Formulas and Discrete Groups: Symposium in Honor of Atle Selberg Oslo, Norway, July 14–21, 1987, Academic Press, New York, 1989, pp. 11–27.Google Scholar
  2. [2]
    I. Bernstein, Letter to Piatetski-Shapiro, unpublished manuscript, 1986.Google Scholar
  3. [3]
    I. Bernstein, Meromorphic Continuation of Eisenstein Series, unpublished manuscript, 1987.Google Scholar
  4. [4]
    A. Borel, Automorphic L-functions, in A. Borel and W. Casselman, eds., Automorphic L-functions: Automorphic Forms, Representations and L-Functions, Part 2, Proceedings of Symposia in Pure Mathematics 33, AMS, Providence, RI, 1979, pp. 27–62.Google Scholar
  5. [5]
    A. Borel, Automorphic Forms on SL(2, ℝ), Cambridge University Press, Cambridge, UK, 1997.MATHGoogle Scholar
  6. [6]
    D. Bump, Automorphic Forms and Representations, Cambridge University Press, Cambridge, UK, 1997.CrossRefGoogle Scholar
  7. [7]
    J. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, New York, 1967.MATHGoogle Scholar
  8. [8]
    Y. Colin de Verdier, Une nouvelle démonstration du prolongement méromorphe des séries d’Eisenstein, C. R. Acad. Sci. Paris Sér. I Math., 293(1981), 361–363.Google Scholar
  9. [9]
    P. Cohen and P. Sarnak, Discontinuous Groups and Harmonic Analysis, unpublished lecture notes.Google Scholar
  10. [10]
    A. Connes, Noncommutative geometry and the Riemann zeta function, in V. I. Arnold, ed., Mathematics: Frontiers and Perspectives, AMS, Providence, RI, 2002, 35–54.Google Scholar
  11. [11]
    I. Efrat, The Selberg trace formula for PSL 2(ℝ)n, Mem. Amer. Math. Soc., 65(1987), 359.MathSciNetGoogle Scholar
  12. [12]
    J. Elstrodt, Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, II, III, Math. Ann., 203(1973), 295–300; Math. Z, 132(1973), 99–134; Math. Ann., 208(1974), 99–132.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    L. Faddeev, The eigenfunction expansion of Laplace’s operator on the fundamental domain of a discrete group on the Lobačevskǐi, plane, Trudy Moskov. Mat. Obšč. 17(1967) 323–350. Trans. Moscow Math. Soc, 17(1967), 357–386.MathSciNetMATHGoogle Scholar
  14. [14]
    S. Gelbart, Lectures on the Arthur-Selberg Trace Formula, AMS, Providence, RI, 1996.MATHGoogle Scholar
  15. [15]
    S. Gelbart and H. Jacquet, Forms of GL(2) from an analytic point of view, in A. Borel and W. Casselman, eds., Automorphic Forms, Representations, and L-functions, Part 1, Proceedings of Symposia in Pure Mathematics 33, AMS, Providence, RI, 1979, pp. 213–254.Google Scholar
  16. [16]
    I. Gelfand, M. Graev, and I. Piatetskii-Shapiro, Representation Theory and Automorphic Functions, Saunders, San Francisco, 1969; reprinted by Academic Press, New York, 1990.Google Scholar
  17. [17]
    R. Godement, The decomposition of L 2(G/Γ) for Γ = SL (2, ℤ), in Algebraic Groups and Discontinuous Subgroups, in A. Borel and G. Mostow, eds., Algebraic Groups and Discontinuous Subgroups, Proceedings of Symposia in Pure Mathematics 9, AMS, Providence, RI, 1966, 225–234.CrossRefGoogle Scholar
  18. [18]
    R. Godement, The spectral decomposition of cusp forms, in A. Borel and G. Mostow, eds., Algebraic Groups and Discontinuous Subgroups, Proceedings of Symposia in Pure Mathematics 9 AMS, Providence, RI, 1966, 225–234.CrossRefGoogle Scholar
  19. [19]
    H. Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Lecture Notes in Mathematics 62, Springer-Verlag, New York, 1968.MATHGoogle Scholar
  20. [20]
    D. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. 1, Lecture Notes in Mathematics 548, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  21. [21]
    D. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. 2, Lecture Notes in Mathematics 1001, Springer-Verlag, New York, 1983.MATHGoogle Scholar
  22. [22]
    I. Herstein, Noncommutative Rings, Carus Monograph 15, MAA, Washington, DC, 1968.MATHGoogle Scholar
  23. [23]
    H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Biblioteca de la Revista Matematica Iberoamericana, Madrid, 1995.MATHGoogle Scholar
  24. [24]
    A. E. Ingham, Distribution of Prime Numbers, Cambridge University Press, Cambridge, UK, 1932.Google Scholar
  25. [25]
    H. Jacquet, Note on the analytic continuation of Eisenstein series: An appendix to A. Knapp, “Theoretical aspects of the trace formula for GL(2),” in Representation Theory and Automorphic Forms (Edinburgh, 1996), Proceedings of Symposia in Pure Mathematics 61, AMS, Providence, RI, 355–405.Google Scholar
  26. [26]
    H. Jacquet and R. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics 114, Springer-Verlag, New York, 1970.MATHGoogle Scholar
  27. [27]
    A. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples, Princeton University Press, Princeton, NJ, 1986.MATHGoogle Scholar
  28. [28]
    A. Knapp and E. Stein, Intertwining operators for semisimple groups, Ann. Math. (2), 93(1971), 489–578.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    T. Kubota, Elementary Theory of Eisenstein Series, John Wiley, New York, 1973.MATHGoogle Scholar
  30. [30]
    S. Lang, SL(2, ℝ), Addison-Wesley, Reading, MA, 1975.MATHGoogle Scholar
  31. [31]
    S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, MA, 1993.MATHGoogle Scholar
  32. [32]
    R. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Mathematics 544, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  33. [33]
    R. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications III, Lecture Notes in Mathematics 170, Springer-Verlag, New York, 1970.Google Scholar
  34. [34]
    P. Lax and R. Phillips, Scattering Theory for Automorphic Functions, Annals of Mathematics Studies 87, Princeton University Press, Princeton, NJ, 1976.MATHGoogle Scholar
  35. [35]
    H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 121(1949), 141–183.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    C. Moeglin and J.-L. Waldspurger, Décomposition Spectrale et Séries d’Eisenstein, Birkhäuser, Basel, 1993 (in French); Spectral Decomposition and Eisenstein Series, Cambridge University Press, Cambridge, UK, 1995 (in English).Google Scholar
  37. [37]
    M. S. Osborne and G. Warner, The Theory of Eisenstein Systems, Academic Press, New York, 1981.MATHGoogle Scholar
  38. [38]
    S. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge University Press, Cambridge, UK, 1988.CrossRefMATHGoogle Scholar
  39. [39]
    B. Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc, 80(1974), 996–1000.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    W. Roelcke, Uber die Wellengleichung bei Grenzkreisgruppen erster Art, S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl. 1953/1955 (1956), 159–267.MathSciNetGoogle Scholar
  41. [41]
    A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), 20(1956), 47–87.MathSciNetMATHGoogle Scholar
  42. [42]
    A. Selberg, Discontinuous groups and harmonic analysis, in Proceedings of the International Congress of Mathematicians (Stockholm, 1962), 1963, pp. 177–189.Google Scholar
  43. [43]
    A. Selberg, Harmonic analysis, in A. Selberg, Collected Works, Springer-Verlag, New York, 1989, article 39; this is the annotated surviving portion of the 1955 Göttingen lecture notes.Google Scholar
  44. [44]
    A. Selberg, Atle, On the estimation of Fourier coefficients of modular form, in A. Whiteman, ed., Theory of Numbers, Proceedings of Symposia in Pure Mathematics 8, AMS, Providence, RI, 1965, 1–15.CrossRefGoogle Scholar
  45. [45]
    T. Tamagawa, On Selberg’s trace formula, J. Fac. Sci. Univ. Tokyo Sec. I, 8(1960), 363–386.MathSciNetMATHGoogle Scholar
  46. [46]
    A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer-Verlag, New York, 1985.CrossRefMATHGoogle Scholar
  47. [47]
    V. Varadarajan, An Introduction to Harmonic Analysis on Semisimple Lie Groups, Cambridge University Press, Cambridge, UK, 1999.MATHGoogle Scholar
  48. [48]
    A. Venkov, Spectral theory of automorphic functions, the Selberg zeta function and some problems of analytic number theory and mathematical physics, Uspekhi Mat. Nauk, 34-3 (1979), 69–135; Russian Math. Surveys, 34(1979), 79–153.MathSciNetMATHGoogle Scholar
  49. [49]
    A. Venkov, Spectral Theory of Automorphic Functions and Its Applications, Kluwer, Dordrecht, The Netherlands, 1990.CrossRefMATHGoogle Scholar
  50. [50]
    A. Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund., volume dedicated to Marcel Riesz, 1952, 252–265.Google Scholar
  51. [51]
    A. Weil, Basic Number Theory, Springer-Verlag, New York, 1967.CrossRefMATHGoogle Scholar
  52. [52]
    E. Whittaker and G. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, UK, 1927.MATHGoogle Scholar
  53. [53]
    S.-T. Wong, The meromorphic continuation and functional equations of cuspidal Eisenstein series for maximal cuspidal groups, Mem. Amer. Math. Soc, 83(1990), 423.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Daniel Bump

There are no affiliations available

Personalised recommendations