Advertisement

From Modular Forms to Automorphic Representations

  • Stephen S. Kudla

Abstract

This chapter sketches the passage from classical holomorphic modular forms f weight k and level N to automorphic representations of π = π(f) of GL2(A).

Keywords

Modular Form Cusp Form Automorphic Form Open Subgroup Whittaker Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Blasius, On multiplicities for SL(n), Israel J. Math., 88(1994), 1–3.MathSciNetCrossRefGoogle Scholar
  2. [2]
    D. Bump, Automorphic Forms and Representations, Cambridge University Press, Cambridge, UK, 1997.CrossRefGoogle Scholar
  3. [3]
    W. Casselman, On some results of Atkin and Lehner, Math. Ann., 201(1973), 301–314.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Cogdell, Analytic theory of L-functions for GLn, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 197–228 (this volume).Google Scholar
  5. [5]
    J. Cogdell, Langlands conjectures for GLn, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 229–249 (this volume).Google Scholar
  6. [6]
    J. Cogdell, Dual groups and Langlands functoriality, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 251–269 (this volume).Google Scholar
  7. [7]
    F. Diamond and J. Im, Modular forms and modular curves, in Seminar on Fermat’s Last Theorem, CMS Conference Proceedings 17, American Mathematical Society, Providence, RI, 1995, 39–133.Google Scholar
  8. [8]
    S. Gelbart, Automorphic Forms on Adele Groups, Princeton University Press, Princeton, NJ, 1975.MATHGoogle Scholar
  9. [9]
    S. Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc, 10(1984), 177–219.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    R. Godement, Notes on the Jacquet-Langlands Theory, Institute for Advanced Study, Princeton, NJ, 1970.Google Scholar
  11. [11]
    H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture Notes in Mathematics 114, Springer-Verlag, New York, 1970.MATHGoogle Scholar
  12. [12]
    T. Knapp, Introduction to the Langlands program, Proc. Sympos. Pure Math., 61(1997), 245–302.MathSciNetCrossRefGoogle Scholar
  13. [13]
    E. Kowalski, Elementary theory of L-functions I and II, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 1–37 (this volume).Google Scholar
  14. [14]
    S. Lang, Introduction to modular forms, Springer-Verlag, New York, 2001.Google Scholar
  15. [15]
    R. P. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer-Verlag, New York, 1970, 18–86.CrossRefGoogle Scholar
  16. [16]
    T. Miyake, Modular Forms, Springer-Verlag, New York, 1989.MATHGoogle Scholar
  17. [17]
    D. Ramakrishnan, A refinement of the strong multiplicity one theorem for GL(2), appendix to R. Taylor, “-adic representations associated to modular forms over imaginary quadrtic fields II,” Invent. Math., 116(1994), 645–649.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Pub. IHES, 18(1963), 1–69.Google Scholar
  19. [19]
    G Shimura, Introduction to the Arithmetic Theory of Automorphic Forms, Princeton University Press, Princeton, NJ, 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Stephen S. Kudla

There are no affiliations available

Personalised recommendations