Classical Automorphic Forms

  • E. Kowalski


With automorphic forms and their associated L-functions, one enters into new territory; the catch-phrase here is that we will describe the GL(2) analogue of the GL(1) theory of Dirichlet characters (i.e., over Q). The corresponding work for more general groups and general base field K will be described in later chapters.


Modular Form Fourier Coefficient Theta Function Eisenstein Series Cusp Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL]
    A. Atkin and J. Lehner, Hecke operators on Γ0(m), Math. Ann., 185(1970), 134–160.MathSciNetCrossRefMATHGoogle Scholar
  2. [Bu]
    D. Bump, Automorphic Forms and Representations, Cambridge University Press, Cambridge, UK, 1996.Google Scholar
  3. [CF]
    J. W. S. Cassels and A. Fröhlich, eds., Algebraic Number Theory, Academic Press, New York, 1967.MATHGoogle Scholar
  4. [CP]
    J. Cogdell and I. Piatetski-Shapiro, The Arithmetic and Spectral Analysis of Poincaré Series, Perspectives in Mathematics 13, Academic Press, New York, 1990.MATHGoogle Scholar
  5. [Co]
    H. Cohen, Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics 193, Springer-Verlag, New York, 2000.CrossRefMATHGoogle Scholar
  6. [CS]
    B. Conrey and K. Soundararajan, Real zeros of quadratic Dirichlet L-functions, Invent. Math., 150-1(2002), 1–44.MathSciNetCrossRefMATHGoogle Scholar
  7. [De]
    P. Deligne, Les conjectures de Weil I, Inst. Hautes Études Sci. Publ. Math., 43(1974), 273–300.MathSciNetCrossRefGoogle Scholar
  8. [Di]
    P. G. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, in Collected Works, Vol. I, Chelsea, New York, 1969, 313–342.Google Scholar
  9. [Du]
    W. Duke, The dimension of the space of cusp forms of weight one, Internat. Math. Res. Notices, 2(1995), 99–109.MathSciNetCrossRefGoogle Scholar
  10. [Ge]
    S. Gelbart, Automorphic Forms on Adèle Groups, Annals of Mathematical Studies 83, Princeton University Press, Princeton, NJ, 1975.MATHGoogle Scholar
  11. [Go]
    D. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa 3, 4(1976), 623–663.Google Scholar
  12. [I1]
    H. Iwaniec, Topics in Classical Automorphic Forms, Graduate Studies in Mathematics 17, American Mathematical Society, Providence, 1997.MATHGoogle Scholar
  13. [I2]
    H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Biblioteca de la Revista Matemática Iberoamericana, Madrid, 1995.MATHGoogle Scholar
  14. [IR]
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Graduate Texts in Mathematics 84, Springer-Verlag, New York, 1990.CrossRefMATHGoogle Scholar
  15. [KS]
    N. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy, Colloquium Publications, American Mathematical Society, Providence, 1998.Google Scholar
  16. [L]
    E. Landau, Bemerkungen zum Heilbronnschen Satz, Acta Arithmetica, 1(1936), 1–18.Google Scholar
  17. [La]
    S. Lang, Algebraic Number Theory, Graduate Texts in Mathematics 110, Springer-Verlag, New York, 1986.CrossRefMATHGoogle Scholar
  18. [LRS]
    W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geometric Functional Anal., 5(1994), 387–401.MathSciNetCrossRefGoogle Scholar
  19. [Mi]
    T. Miyake, Modular Forms, Springer-Verlag, New York, 1989.MATHGoogle Scholar
  20. [PS]
    R. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of PSL(2, R), Invent. Math., 80(1985), 339–364.MathSciNetCrossRefMATHGoogle Scholar
  21. [Rie]
    B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, in Monatsberichte der Berliner Akademie, Berliner Akademie, Berlin, 1859, 671–680; reprinted in R. Narasimhan, ed., Gesammelte mathematische Werke, wissenschaftlicher Nachlas s und Nachtrage, Springer-Verlag, Berlin, 1990, 177–185.Google Scholar
  22. [RS]
    Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J., 81(1996), 269–322.MathSciNetCrossRefMATHGoogle Scholar
  23. [Sa]
    P. Sarnak, Quantum chaos, symmetry and zeta functions, Curr. Dev. Math., 3(1997), 84–115.Google Scholar
  24. [Se1]
    J.-P. Serre, Cours d’arithmétique, 3rd ed., Presses Université de France, Paris, 1988.Google Scholar
  25. [Se2]
    J.-P. Serre, Modular forms of weight one and Galois representations, in A. Frölich, ed., Algebraic Number Fields, Academic Press, New York, 1977, 193–268.Google Scholar
  26. [Sh]
    G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton University Press, Princeton, NJ, 1971.MATHGoogle Scholar
  27. [Si]
    CL. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arithmetical 1(1936), 83–86.Google Scholar
  28. [Ta]
    J. Tate, Fourier analysis in number fields and Hecke’s zeta function, in J. W. S. Cassels and A. Fröhlich, eds., Algebraic Number Theory, Academic Press, New York, 1967, 305–347 [CF].Google Scholar
  29. [Tu]
    J. Tunnell, Graduate course, Rutgers University, New Brunswick, NJ, 1995–1996.Google Scholar
  30. [Wa]
    L. Washington, Cyclotomic Fields, 2nd ed., Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997.MATHGoogle Scholar
  31. [We]
    A. Weil, Prehistory of the zeta function, in K. E. Aubert, E. Bombieri, and D. Goldfeld, eds., Number Theory, Trace Formulas and Discrete Groups, Academic Press, New York, 1989.Google Scholar
  32. [Ti]
    A. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed. (revised by D. R. Heath-Brown), Oxford University Press, Oxford, UK, 1986.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • E. Kowalski

There are no affiliations available

Personalised recommendations