Skip to main content
  • 3818 Accesses

Abstract

One of the principle goals of modern number theory is to understand the Galois group G k = Gal(̄k/k) of a local or global field k, such as ℚ for example. One way to try to understand the group G k is by understanding its finite dimensional representation theory. In the case of a number field, to every finite dimensional representation ρ : G k → GL n (ℂ) Artin attached a complex analytic invariant, its L-function L(s, ρ). One approach to understanding ρ is through this invariant. For one dimensional ρ this idea was fundamental for the analytic approach to abelian class field theory and the understanding of G ab k . To obtain a more complete understanding of G k we would hope for a more complete understanding of the L(s, ρ) for higher dimensional representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bernstein and A. Zelevinsky, Induced representations of p-adic groups, I. Ann. scient. Éc. Norm. Sup., 4e série, 10(1977), 441–472.

    MathSciNet  MATH  Google Scholar 

  2. D. Blasius, Automorphic forms and Galois representations: some examples. Automorphic forms, Shimura varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988). Perspect. Math. 11, Academic Press, Boston, MA, 1990, 1–13.

    Google Scholar 

  3. D. Blasius, and J. Rogawski, Motives for Hilbert modular forms. Invent, math. 114(1993), 55–87.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Borel, Automorphic L-functions, Proc. Symp. Pure math. 33, Part 2, (1979), 27–61.

    Article  Google Scholar 

  5. C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over ℚ. J. Amer. Math. Soc. 14(2001), 843–939.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bushnell and P. Kutzko, The Admissible Dual of GL(N) via Compact Open Subgroups. Annals of Mathematics Studies 129. Princeton University Press, Princeton, NJ, 1993.

    MATH  Google Scholar 

  7. K. Buzzard, M. Dickinson, N. Shepherd-Barron, and R. Taylor, On icosahedral Artin representations. Duke Math. J. 109(2001), 283–318.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. (4) 19(1986), 409–468.

    MathSciNet  MATH  Google Scholar 

  9. H. Carayol, Variétés de Drinfeld compactes (d’après Laumon, Rapoport, et Stuhler). Séminaire Bourbaki No. 756. Astérisque 206(1992), 369–409.

    MathSciNet  Google Scholar 

  10. H. Carayol, Preuve de la conjecture de Langlands locale pour GLn: Travaux de Harris-Taylor et Henniart. Séminaire Bourbaki No. 857. Astérisque 266(2000), 191–243.

    MathSciNet  Google Scholar 

  11. L. Clozel, Motifs et formes automorphes: applications du principe de fonctorialité. Automorphic forms, Shimura varieties, and L-functions, Vol. I(Ann Arbor, MI, 1988), Perspect. Math. 10, Academic Press, Boston, MA, 1990, 77–159.

    Google Scholar 

  12. L. Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n). Publ. Math. IHES 73(1991), 97–145.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.W. Cogdell, Analytic theory of L-functions for GLn, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 197–228 (this volume).

    Google Scholar 

  14. J.W. Cogdell, Dual groups and Langlands functoriality, in J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser Boston, Boston, 2003, 251–269 (this volume).

    Google Scholar 

  15. J.W. Cogdell and I.I. Piatetski-Shapiro, Converse Theorems for GLn. Publ. Math. IHES 79(1994), 157–214.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.W. Cogdell and I.I. Piatetski-Shapiro, Converse Theorems for GLn, II. J. reine angew. Math. 507(1999), 165–188.

    MathSciNet  MATH  Google Scholar 

  17. P. Deligne, Formes modulaires et représentations -adiques. Séminaire Bourbaki no. 355, Février 1969.

    Google Scholar 

  18. P. Deligne, Formes modulaires et représentations de GL(2), in Modular Forms of One Variable, II, Lecture Notes in Mathematics No. 349, Springer-Verlag, 1973, 55–105.

    Google Scholar 

  19. P. Deligne, Les constantes des équations fonctionnelles des fonctions L. Modular Forms of One Variaable, II, Lecture Notes in Mathematics No. 349, Springer-Verlag, 1973, 501–597.

    Google Scholar 

  20. P. Deligne, La conjecture de Weil, II. Publ. Math. IHES 52(1980), 137–252.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Deligne and J-P. Serre, Formes modulaires de poids 1. Ann. Sci. Ec. Norm. Sup 7(1974), 507–530.

    MathSciNet  MATH  Google Scholar 

  22. V. Drinfeld, Proof of the Petersson conjecture for GL(2) over a global field of characteristic p. Funct. Anal. and its Appl. 22(1988), 28–43.

    Article  MathSciNet  Google Scholar 

  23. V. Drinfeld, Cohomology of compactifled modules of F-sheaves of rank 2. Journal of Soviet Mathematics 46(1989), 1789–1821.

    Article  MathSciNet  Google Scholar 

  24. R. Godement and H. Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972

    Book  MATH  Google Scholar 

  25. M. Harris, The local Langlands conjecture for GL(n) over a p-adic field, n < p, Invent. math. 134(1998), 177–210.

    Article  MATH  Google Scholar 

  26. M. Harris, D. Soudry, and R. Taylor, l-adic representations associated to modular forms over imaginary quadratic fields. I. Invent. math. 112(1993), 377–411.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Harris and R. Taylor, The geometry and cohomology of certain simple Shimura varieties, Annals of Math Studies 151, Princeton University Press, 2001.

    Google Scholar 

  28. G. Henniart, La conjecture de Langlands numérique pour GL(n), Ann. Scient. Éc. Norm. Sup. (4) 21(1988), 497–544.

    MathSciNet  MATH  Google Scholar 

  29. G. Henniart, Caractérization de la correspondance de Langlands locale par les facteurs ɛ de pairs, Invent. math. 113(1993), 339–350.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Henniart, Une preuve simple des correspondance de Langlands pour GL(n) sur un corps p-adic, Invent. math. 139(2000), 439–455.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Jacquet and R.P. Langlands, Automorphic Forms on GL(2). Springer Lecture Notes in Mathematics No. 114, Springer Verlag, Berlin, 1970.

    MATH  Google Scholar 

  32. H. Jacquet, I.I. Piatetski-Shapiro, and J. Shalika, Facteurs L et ɛ du groupe linéaire. C. R. Acad. Sci. Paris Sér. A-B 289(1979), no. 2, A59–A61.

    MathSciNet  Google Scholar 

  33. S. Kudla, The local Langlands correspondence: the non-Archimedean case. Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math. 55 Part 2, (1994), 365–391.

    Article  MathSciNet  Google Scholar 

  34. L. Lafforgue, Chtoucas de Drinfeld et Conjecture de Ramanujan-Petersson. Astérisque 243, Sociéte Mathématique de France, 1997.

    Google Scholar 

  35. L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands. Invent, math. 147(2002), 1–241.

    Article  MathSciNet  MATH  Google Scholar 

  36. R.P. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern Analysis and Applications. Lecture Notes in Mathematics No. 349, Springer, New York, 1970, 18–86.

    Chapter  Google Scholar 

  37. R.P. Langlands, Base change for GL(2). Annals of Mathematics Studies 96. Princeton University Press, Princeton, 1980.

    Google Scholar 

  38. R.P. Langlands, On the classification of irreducible representations of real algebraic groups, in Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Mathematical Surveys and Monographs, No. 13, AMS, Providence, 1989, 101–170.

    Chapter  Google Scholar 

  39. R.P. Langlands, Automorphic representations, Shimura varieties, and motives. Ein Märchen. Proc. Symp. Pure math. 33, part 2, (1979), 205–246.

    Article  MathSciNet  Google Scholar 

  40. R.P. Langlands, Endoscopy and beyond. in Contributions to Automorphic Forms, Geometry, and Number Theory (Shalikafest 2002), H. Hida, D. Rama-krishnan, and F. Shahidi, eds., Johns Hopkins University Press, Baltimore, to appear.

    Google Scholar 

  41. G. Laumon, Transformation de Fourier, constantes d’équations fonctionelles, et conjecture de Weil. Publ. Math, IHES 65(1987), 131–210.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Laumon, The Langlands correspondence for function fields (following Laurent Lafforgue), in Current Developments in Mathematics 1999 (preliminary edition). International Press, Sommerville, 1999, 69–87.

    Google Scholar 

  43. G. Laumon, La correspondance de Langlands sur les corps de fonctions (d’après Laurent Lafforgue), Séminaire Bourbaki, No. 873, Mars 2000.

    Google Scholar 

  44. G. Laumon, M. Rapoport, and U. Stuhler, D-elliptic sheaves and the Langlands correspondence, Invent. math. 113(1993), 217–338.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. Ohta, Hilbert modular forms of weight one and Galois representations. Automorphic forms of several variables (Katata, 1983). Progr. Math. 46, Birkhäuser Boston, Boston, MA, 1984, 333–352.

    Google Scholar 

  46. D. Ramakrishnan, Pure motives and automorphic forms, in Motives (Seattle, WA, 1991). Proc. Sympos. Pure Math. 55, Part 2, (1994) 411–446.

    Article  MathSciNet  Google Scholar 

  47. F. Rodier, Représentations de GL(n, k) où k est un corps p-adique. Séminaire Bourbaki No. 587, Astérisque, 92–92(1982), 201–218.

    MathSciNet  Google Scholar 

  48. J. Rogawski and J. Tunnell, On Artin L-functions associated to Hilbert modular forms of weight one. Invent. math. 74(1983), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Rohrlich, Elliptic curves and the Weil-Deligne group. CRM Proc. & Lecture Notes 4(1994), 125–157.

    MathSciNet  Google Scholar 

  50. I. Satake, Theory of spherical functions on reductive algebraic groups over a p-adic field. Publ. Math. IHES 18(1963), 5–70.

    Article  MathSciNet  Google Scholar 

  51. J.T. Tate, Number theoretic background, Proc. Symp. Pure math. 33, Part 2, (1979), 3–26.

    Article  MathSciNet  Google Scholar 

  52. R. Taylor, On Galois representations associated to Hilbert modular forms. Invent. math. 98(1989), 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Taylor, -adic representations associated to modular forms over imaginary quadratic fields II. Invent. Math. 116(1994), 619–643.

    Article  MathSciNet  MATH  Google Scholar 

  54. R. Taylor, On Galois representations associated to Hilbert modular forms. II. Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993), Internat. Press, Cambridge, MA, 1995, 185–191.

    Google Scholar 

  55. R. Taylor, Representations of Galois groups associated to modular forms. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 435–442.

    Google Scholar 

  56. R. Taylor, On icosahedral Artin representations. II. Amer. J. Math., to appear.

    Google Scholar 

  57. J. Tunnell, Artin’s conjecture for representations of octahedral type. Bull. Amer. Math. Soc. (N.S.) 5(1981), 173–175.

    Article  MathSciNet  MATH  Google Scholar 

  58. A. Wiles, On ordinary -adic representations associated to modular forms. Invent. math. 94(1988), no. 3, 529–573.

    Article  MathSciNet  MATH  Google Scholar 

  59. A. Wiles, Modular elliptic curves and Fermat’s last theorem. Ann. of Math. 141(1995), 443–551.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Zelevinsky, Induced representations of p-adic groups II. Ann. Sci. École Norm. Sup., 4e série, 13(1980), 165–210.

    MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cogdell, J.W. (2004). Langlands Conjectures for GL n . In: Bernstein, J., Gelbart, S. (eds) An Introduction to the Langlands Program. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8226-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8226-2_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3211-3

  • Online ISBN: 978-0-8176-8226-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics