New Methods of Time-Frequency Analysis

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter presents two new transforms that are useful for the analysis of time-varying signals.


Speech Signal Discrete Fourier Transform Window Function Harmonic Signal Wigner Distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process., vol. 42, no. 11, 3084–3091, 1994.CrossRefGoogle Scholar
  2. 2.
    L. Auslander and R. Tolimieri, Radar ambiguity function and group theory, SIAM J. Math. Anal, vol. 165, no. 3, 577–601, 1985.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Bertrand and P. Bertrand, Affine time-frequency distributions, in Time-Frequency Signal Analysis - Methods and Applications, ed. B. Boashash, Longman-Chesire, Mel-bourne, Australia, 1991.Google Scholar
  4. 4.
    F. Blawatsch, Duality and classification of bilinear time-frequency signal representations, IEEE Trans. Signal Process., vol. 39, no. 7, 1564–1574, 1991.CrossRefGoogle Scholar
  5. 5.
    T. A. C. M. Claasen and W. F. G. Mecklenbrauker, The Wigner distribution - a tool for time-frequency signal analysis - Part I: Continuous-time signals, Philips J. Res., vol. 35, 217–250, 1980.MathSciNetMATHGoogle Scholar
  6. 6.
    T. A. C. M. Claasen and W. F. G. Mecklenbrauker, The Wigner distribution - a tool for time-frequency signal analysis - Part III: Relations with other time-frequency signal transformations, Philips J. Res., vol. 35, no. 6, 372–389, 1980.MathSciNetMATHGoogle Scholar
  7. 7.
    L. Cohen, Time-frequency distributions - a review, Proc. IEEE, vol. 77, no. 7, 941–981, 1989.CrossRefGoogle Scholar
  8. 8.
    M. F. Erden, M. A. Kutay and H. M. Ozaktas, Repeated filtering in consecutive frac-tional Fourier domains and its application to signal restoration, IEEE Trans. Signal Process., vol. 47, no. 5, 1458–1462, 1999.CrossRefGoogle Scholar
  9. 9.
    P. Flandrin, Time-frequency processing of bat sonar signals, animal sonar systems sym-posium, Helsinger (DK), Sept. 10–19. 1986, also in Animal Sonar - Processes and Performance, P. E. Nachtigall and P.W.B. Moore eds., 797–802, Plenum Press, New York, 1988.Google Scholar
  10. 10.
    O. D. Grace, Instantaneous power spectra, J. Acoust Soc. Ant., vol. 69, 191–198, 1981.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    F. Hlawatsch and P. Flandrin, The interference structure of the Wigner distribution and related time-frequency signal representatins, in The Wigner Distribution - Theory and Applications in Signal Processing, W. Mecklenbrauker, ed., Elsevier Science Publishers, North Holland, 1992.Google Scholar
  12. 12.
    H. Inuzuka, T. Ishiguroand and S. Mizuno, Elimination of cross-components in the Wigner distribution of the exponentially swept data by varying the sampling rate, Con- ference Record - IEEE Instrumentation & Measurement Technology, 2, 717–720, 1994.Google Scholar
  13. 13.
    D. L. Jones and T. W. Parks, A high resolution data-adaptive time-frequency repre-sentation, IEEE Trans. Acoust, Speech. Signal. Process., vol. 38, no. 12, 2127–2135, 1990.CrossRefGoogle Scholar
  14. 14.
    D. L. Jones and T. W. Parks, A resolution comparison of several time-frequency repre-sentations, IEEE Trans. Signal Process., vol. 40, no. 2, 413–420, 1992.CrossRefGoogle Scholar
  15. 15.
    S. Kadamte and G. F. Boudreaux-Bartels, A comparison of the existence of ‘cross terms’ in the Wigner distribution and the squared magnitude of the wavelet transform and the short-time Fourier transform, IEEE Trans. Signal Process., vol. 40, no. 10, 2498–2517, 1992.CrossRefGoogle Scholar
  16. 16.
    A. S. Kayhan, A. El-Jaroudi and L. F. Chaparro, Data-adaptive evolutionary spectral estimation, IEEE Trans. Signal Process., vol. 43, no. 1, 204–213, 1995.CrossRefGoogle Scholar
  17. 17.
    J. R. Kiauder, A. C. Price, S. Darlinglon and W. J. Albersheim, The theory and design of chirp radars, Bell System Tech. J., vol. 39, 745–808, 1960.Google Scholar
  18. 18.
    A. W. Lohmann and B. H. Soffer, Relationships between the Radon-Wigner and frac-tional Fourier transforms, J. Opt. Soc. Amer. A., vol. 11 no. 6, 1798–1801, 1994.MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. V. Marid and E. L. Titlebaum, Frequency hop multiple access codes based upon the theory of cubic congruences, IEEE Trans. Aerospace, Elect. Syst, vol. 26, no. 6, 1035–1039, 1990.CrossRefGoogle Scholar
  20. 20.
    W. F. G. Mecklenbráuker, A tutorial on non-parametric bilinear time-frequency signal representations, Les Houches, Session XLV, 1985, Signal Processing, eds, J. L. Lacoume, T. S. Durrani and R. Stora, 277–336, 1987.Google Scholar
  21. 21.
    G. Mourgues, M. R. Feix, J. C. Andrieux and P. Bertrand, Not necessary but sufficient conditions for the positivity of generalized Wigner functions, J. Math. Phys., vol. 26, 2554–2555, 1985.MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. N. Nawab and T. F. Quatieri, Advanced Topics in Signal Processing, J. S. Lim and A. N. Oppenheim. eds., Prentice-Hall, Englewood Cliffs, NJ, 1988.Google Scholar
  23. 23.
    H. M. Ozaktas and D. Mendlovic, The fractional Fourier transform as a tool for analyzing beam propagation and spherical mirror resonators, Opt. Lett, vol. 19, 1678–1680, 1994.CrossRefGoogle Scholar
  24. 24.
    A. Papoulis, Signal Analysis, McGraw-Hill Book Co., New York. 1977.MATHGoogle Scholar
  25. 25.
    P. Pellat-Finet and G. Bonnet, Fractional-order Fourier transform and Fourier optics, Opt Commun., vol. 111, 141–154, 1994.CrossRefGoogle Scholar
  26. 26.
    S. Qian and D. Chen, Joint time-frequency analysis: methods and applications, Prentice Hall PTR, Upper Saddle River, NJ, 1996.Google Scholar
  27. 27.
    S. Qian and J. M. Morris, Wigner distribution decomposition and cross-terms deleted representation, Signal Processing, vol. 27, no. 2, 125–144, 1992.MATHCrossRefGoogle Scholar
  28. 28.
    L. Qiu, Elimination of the cross-term for two-component signals in the Wigner distribu-tion, International J. of Electronics, vol. 78. 1091–1099, 1995.CrossRefGoogle Scholar
  29. 29.
    L. R. Rabiner and R. W. Schafer, Digital Processing of Speech Signals, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978.Google Scholar
  30. 30.
    G. N. Ramachandran and A. V. Lakshminarayanan, Three dimensional reconstruc-tions from radiographs and electron micrographs: Application of convolution instead of Fourier transforms, Proc. Nat. Acad. Sci., vol. 68, 2236–2240, 1971.MathSciNetCrossRefGoogle Scholar
  31. 31.
    I. Raveh and D. Mendlovic, New properties of the Radon transform of the cross Wigner ambiguity distribution function, IEEE Trans. Signal Process., vol. 47, no. 7, 2077–2080, 1999.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    M. G. Raymer, M. Bech and D. F. Mcalister, Complex wave-field reconstruction using phase-space tomography, Phys. Rev. Lett, vol. 72, 1137–1140, 1994.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    A. W. Rihaczek, Design of zigzag FM zignals, IEEE Trans. AER EL, vol. AES-4, 1968.Google Scholar
  34. 34.
    O. Rioul and P. Flandrin, Time-scale energy distributions: a general class extending wavelet transforms, IEEE Trans. Signal Process., vol. 40, no. 7, 1746–1757, 1992.MATHCrossRefGoogle Scholar
  35. 35.
    B. Ristic and B. Boashash, Kernel design for time-frequency signal analysis using the Radon transform, IEEE Trans. Signal Process., vol.41, no. 5, 1996–2008, 1993.MATHCrossRefGoogle Scholar
  36. 36.
    L. A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci., vol. NS-21, 21–43, 1974.Google Scholar
  37. 37.
    D. T. Smithey, M. Beck and M. G. Raymer, Measurement of the Wiger distribution and the density matrix of a light mode using optical homodyne tomography application to squeezed states and the vacuum, Phys. Rev. Lett, vol. 70, 1244–1247, 1993.CrossRefGoogle Scholar
  38. 38.
    L. Stankovic, Method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-Wigner distribution, IEEE Trans. Signal Process, vol. 43, no. 5, 1262–1268, 1995.CrossRefGoogle Scholar
  39. 39.
    H. H. Szu and J. A. Blodgett, Wigner distribution and ambiguity function, in Optics in Four Dimensions, ed. L. M. Narducci, American Institute of Physics, New York, pp. 355–81, 1981.Google Scholar
  40. 40.
    H. L. VanTrees, Detection, Estimation and Modulation Theory, Part III, J. Wiley & Sons Publ., New York, 1971.Google Scholar
  41. 41.
    X. G. Xia, Y. Owechko, B. H. Soffer and R. M. Matic, On generalized-marginal time-frequency distributions, IEEE Trans. Signal Process., vol.44, no. 11, 2882–2886, 1996.CrossRefGoogle Scholar
  42. 42.
    A. L. Warrick and P. A. Delaney, Detection of linear features using a localized Radon transform with a wavelet filter, ICASSP-97, vol. 4, 2769–2772, 1997.CrossRefGoogle Scholar
  43. 43.
    J. C. Wood and D. T. Barry, Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multicomponent linear-FM signals, IEEE Trans. Signal Process., vol. 42, no. 8, 2094–2104, 1994.CrossRefGoogle Scholar
  44. 44.
    J. C. Wood and D. T. Barry, Linear signal synthesis using the Radon-Wigner transform, IEEE Trans. Signal Process., vol. 42, no. 8, 2105–2111, 1994.CrossRefGoogle Scholar
  45. 45.
    J. C. Wood and D. T. Barry, Radon transformation of time-frequency distributions for analysis of multicomponent signals, IEEE Trans. Signal Process., vol. 42, no. 11, 3166–3177, 1994.CrossRefGoogle Scholar
  46. 46.
    J. C. Wood and D. T. Barry, Time-frequency analysis of skeletal muscle and cardiac vibrations, Proceedings of the IEEE, vol. 84, no. 9, 1281–1294, 1996.CrossRefGoogle Scholar
  47. 47.
    F. Zhang, G. Bi and Y. Chen, Tomography time-frequency transform, IEEE Trans. Signal Process, vol. 50, no. 6, 1289–1297, 2002.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations