Advertisement

Integer Transforms and Fast Algorithms

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter presents integer transforms and their fast algorithms.

Keywords

Mean Square Error Fast Algorithm Kernel Matrix Lift Scheme Signal Flow Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proceedings of IEEE (Special issue on the Hartley transform), vol. 82, no. 3, 1994.Google Scholar
  2. 2.
    G. P. Apousleman, M. W. Marcellin and B. R. Hunt, Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT, IEEE Trans. Geoscience Remote Sensing, vol. 33, no. 1, 26–34, 1995.CrossRefGoogle Scholar
  3. 3.
    V. Britanak and K. R. Rao, The fast generalized discrete Fourier transforms: a unified approach to the discrete sinusoidal transforms computation, Signal Processing, vol. 79, no. 2, 135–140, 1999.MATHCrossRefGoogle Scholar
  4. 4.
    R. Calderbank, I. Daubechies, W. Sweldens and B. L. Yeo, Wavelet transforms that map integers to integers, Appl. Comput. Harmon. Anal, vol. 5, no. 3, 332–369, 1998.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    W. K. Cham and P. C. Yip, Integer sinusoidal transforms for image processing, Inter-national J. Electronics, vol. 70, no. 6, 1015–1030, 1991.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Y. J. Chen, S. Oraintara and T. Nguyen, Integer discrete cosine transform (IntDCT), Invited paper, The 2nd Intern. Conf. Inform. Comm. and Sig. Proc, Singapore, Dec. 1999.Google Scholar
  7. 7.
    L. Z. Cheng, Y. H. Zeng, G. Bi and Z. P. Lin, Fast multiplierless approximation of type-II and type-IV DCT, Preprint, 2001.Google Scholar
  8. 8.
    H. S. Hou, A fast recursive algorithm for computing discrete cosine transform, IEEE Trans. Acoust., Speech, Signal Process., vol. 35, no. 10, 1455–1461, 1987.CrossRefGoogle Scholar
  9. 9.
    N. C. Hu, H. Chang and O. K. Ersoy, Generalized discrete Hartley transform, IEEE Trans. Signal Process., vol. 40, no. 12, 2951–2960, 1992.Google Scholar
  10. 10.
    Z. R. Jiang, Y. Zeng and P. N. Yu, Fast Algorithms, National University of Defense Technology Press, Changsha, P. R. China, 1994 (in Chinese).Google Scholar
  11. 11.
    B. G. Lee, A new algorithm to compute the discrete cosine transform, IEEE Trans. Acoust, Speech, Signal Process., vol. 32, 1243–1245, 1984.MATHCrossRefGoogle Scholar
  12. 12.
    H. S. Malvar, Signal Processing with Lapped Transform, Artech House, Norwood, MA, 1991.Google Scholar
  13. 13.
    M. W. Marcellin, M. J. Gormish, A. Bilgin and M. P. Boliek, An overview of JPEG-2000, Proceedings of Data Compression Conference, 523–541, 2000.Google Scholar
  14. 14.
    N. Memon, X. Wu and B. L. Yeo, Improved techniques for lossless image compression with reversible integer wavelet transforms, IEEE Int. Conf. Image Processing, vol. 3, 891–895, 1998.Google Scholar
  15. 15.
    S. C. Pei and J. J. Ding, The integer transforms analogous to discrete trigonometric transforms, IEEE Trans. Signal Process., vol. 48, no. 12, 3345–3364, 2000.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    W. Philps, Lossless DCT for combined lossy/lossless image coding, IEEE Int. Conf. Image Processing, vol. 3, 871–875, 1998.Google Scholar
  17. 17.
    K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages and Appli-cations, Academic Press, New York, 1990.Google Scholar
  18. 18.
    Y. L. Siu and W. C. Siu, Variable temporal-length 3-D discrete cosine transform coding, IEEE Trans. Image Process., vol. 6, no. 5, 758–763, 1997.CrossRefGoogle Scholar
  19. 19.
    S. Oraintara, Y. J. Chen and T. Nguyen, Integer fast Fourier transform (INTFFT), Proc. ICASSP, Salt Lake City, UT, 2001.Google Scholar
  20. 20.
    G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, Wellesley, 1997Google Scholar
  21. 21.
    W. Sweldens, The lifting scheme: a construction of second generation wavelets, SI AM J. Math. Anal, vol. 29, no. 2, 511–546, 1998.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    T. D. Tran, The BinDCT: fast multiplierless approximation of the DCT, IEEE Signal Process. Lett, vol. 7, no. 6, 141–144, 2000.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Z. Wang, Fast algorithms for the discrete W transform and for the discrete Fourier transform, IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 4, 803–816, 1984.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Z. Wang and B. R. Hunt, The discrete W transform, Appl. Math. Comput., vol. 16, 19–48, 1985.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Z. Wang, The fast W transform-algorithms and programs, Science in China (series A), vol. 32, 338–350, 1989.MATHGoogle Scholar
  26. 26.
    Y. H. Zeng, G. Bi and A. R. Leyman, New polynomial transform algorithms for multi-dimensional DCT, IEEE Trans. Signal Process., vol. 48, no. 10, 2814–2821, 2000.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Y. H. Zeng and X. M. Li, Multidimensional polynomial transform algorithms for mul-tidimensional discrete W transform, IEEE Trans. Signal Process., vol. 47, no. 7, 2050–2053, 1999.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Y. H. Zeng, G. Bi and A. R. Leyman, Polynomial transform algorithms for multi-dimensional discrete Hartley transform, Proc. IEEE International Symposium on Cir-cuits and Systems, Geneva, Switzerland, V517–520, May 2000.Google Scholar
  29. 29.
    Y. H. Zeng, L. Z. Cheng, G. Bi and A. C. Kot, Integer discrete cosine transform and fast algorithms, IEEE Trans. Signal Process., vol. 49, no. 11, 2774–2782, 2001.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Y. H. Zeng, G. Bi and Z. P. Lin, Lifting factorization of discrete W transform, Circuits, Systems, Signal Process., vol. 21, no. 3, 277–298, 2002.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Y. H. Zeng, G. Bi and Z. P. Lin, Integer sinusoidal transforms based on lifting factor-ization, IEEE ICASSP 2001, Salt Lake City, UT.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations