Advertisement

Fast Algorithms for MD Discrete Cosine Transform

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter presents fast algorithms that have recently been developed for the computation of the type-I, -II and -III multidimensional (MD) discrete cosine transforms (DCTs). Some of the concepts used in Chapter 6 are extended for the computation of MD DCTs.

Keywords

Fast Algorithm Mapping Process Arithmetic Operation Symmetric Property Signal Flow Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal Processing, Springer- Verlag, New York, 1995.Google Scholar
  2. 2.
    G. Bi, Fast algorithms for type-III DCT of composite sequence lengths, IEEE Trans. Signal Process., vol. 47, no. 7, 2053–2059, 1999.MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Bi, Y. H. Zeng and Y. Chen, Prime factor algorithm for multi-dimensional discrete cosine transform, IEEE Trans. Signal Process., vol. 49, no. 9, 2156–2161, 2001.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. E. Blahut. Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA., 1984.Google Scholar
  5. 5.
    S. C. Chan and K. L. Ho, A new two-dimensional fast cosine transform, IEEE Trans. Signal Process., vol. 39, 481–485, 1991.MATHCrossRefGoogle Scholar
  6. 6.
    S. C. Chan and K. L. Ho, Efficient index mapping for computing discrete cosine trans-form, Electron. Lett., vol. 25, no. 22, 1499–1500, 1989.MATHCrossRefGoogle Scholar
  7. 7.
    S. C. Chan and K. L. Ho, Fast algorithm for computing the discrete cosine transform, IEEE Trans. Circuits Syst. II, vol. 39, no. 3, 185–190, 1992.MATHCrossRefGoogle Scholar
  8. 8.
    N. I. Cho and S. U. Lee, A fast 4x4 algorithm and implementation of 2-D discrete cosine transform, IEEE Trans. Signal Process., vol. 40, no. 9, 2166–2173, 1992.MATHCrossRefGoogle Scholar
  9. 9.
    N. I. Cho and S. U. Lee, Fast algorithm and implementation for 2-D discrete cosine transform, IEEE Trans. Circuits Syst. II, vol. 38, no. 3, 297–305, 1991.Google Scholar
  10. 10.
    N. I. Cho and S. U. Lee, On the regular structure for the fast 2D DCT algorithm, IEEE Trans. Circuits Syst. II, vol. 40, no. 4, 259–266, 1993.MATHCrossRefGoogle Scholar
  11. 11.
    N. I. Cho and S. U. Lee, DCT algorithms for VLSI parallel implementations, IEEE Trans. Acoustics, Speech, Signal Process., vol. 38, no. 1, 121–127, 1990.CrossRefGoogle Scholar
  12. 12.
    P. Duhamel and C. Guillemot, Polynomial transform computation of the 2D DCT, Proc. Int. Conf. Acoust, Speech, Signal Process, 1515–1518, 1990.Google Scholar
  13. 13.
    W. H. Fang, N. C. Hu and S. K. Shih, Recursive fast computation of the two-dimensional discrete cosine transform, IEE Proc. Vision, Image and Signal Processing, vol. 146, no. 1, 25–33, 1999.CrossRefGoogle Scholar
  14. 14.
    M. A. Haque, A two dimensional fast cosine transform, IEEE Trans. Acoust, Speech, Signal Process., vol. 33. no. 12, 1532–1539, 1985.MATHCrossRefGoogle Scholar
  15. 15.
    D. C. Kar and V. V. B. Tao, On the prime factor decomposition algorithm for the discrete sine transform, IEEE Trans. Signal Process., vol. 42, no. 11, 3258–3260, 1994.CrossRefGoogle Scholar
  16. 16.
    B. G. Lee, Input and output index mapping for a prime-factor-decomposed computation of discrete cosine transform, IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 2, 237–244, 1989.MATHCrossRefGoogle Scholar
  17. 17.
    P. Lee and F. Y. Huang, An efficient prime-factor algorithm for the discrete cosine trans-form and its hardware implementations, IEEE Trans. Acoust, Speech, Signal Process., vol. 42, no. 8, 1996–2005, 1994.Google Scholar
  18. 18.
    H. J. Nussbaumer and P. Quandalle, Fast polynomial transform computation of the 2-D DCT, Proc. ICDSP, Italy, 276–283, 1981.Google Scholar
  19. 19.
    J. Prado and P. Duhamel, A polynomial transform based computation of the 2-D DCT with minimum multiplicative complexity, Proc. ICASSP, vol. 3, 1347–1350, 1996.Google Scholar
  20. 20.
    Y. L. Siu and W. C. Siu, Variable temporal-length 3-D discrete cosine transform coding, IEEE Trans. Image Processing, vol. 6, no. 5, 758–763, 1997.CrossRefGoogle Scholar
  21. 21.
    A. Tatsaki, C. Dre, T. Storaities and C. Goutis, Prime-factor DCT algorithms, IEEE Trans. Signal process., vol. 43, no. 3, 772–776, 1995.CrossRefGoogle Scholar
  22. 22.
    Z. S. Wang, Z. Y. He, C.R. Zou and J. D. Z. Chen, A generalized fast algorithm for n-D discrete cosine transform and its application to motion picture coding, IEEE Trans. Circuits Syst. II, vol. 46, no. 5, 617–627, 1999.MATHCrossRefGoogle Scholar
  23. 23.
    Y. H. Zeng, G. Bi and A. R. Leyman, New polynomial transform algorithm for multidi-mensional DCT, IEEE Trans. Signal Process., vol. 48, no. 10, 2814–2821, 2000.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Y. H. Zeng, G. Bi and A. C. Kot, New algorithm for multidimensional type-III DCT, IEEE Trans. Circuits Syst. II, vol. 47, no. 12, 1523–1529, 2000.MATHCrossRefGoogle Scholar
  25. 25.
    Y. H. Zeng, G. Bi and A. R. Leyman, New algorithm for r-dimensional DCT-II, IEE Proc., Vision, Image and Signal Processing, vol. 148, no. 1, 1–8, 2000.CrossRefGoogle Scholar
  26. 26.
    Y. H. Zeng, G. Bi and Z. P. Lin, Combined polynomial transform and radix-q algorithm for multi-dimensional DCT-III, Multidimensional System Signal Process., vol. 13, no. 1, 79–99, 2002.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Y. H. Zeng, L. Z. Cheng and M. Zhou, Parallel Algorithms for Digital Signal Process-ing, National University of Defense Technology Press, Changsha, P. R. China, 1998 (in Chinese).Google Scholar
  28. 28.
    Y. H. Zeng, Fast algorithms for discrete cosine transform of arbitrary length, Math. Numer. Sinica (in Chinese), vol. 15, no. 3, 295–302, 1993.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations