Advertisement

Fast Algorithms for 1D Discrete Cosine Transform

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter presents fast algorithms for the four types of one-dimensional (1D) discrete cosine transforms (DCTs).

Keywords

Computational Complexity Discrete Cosine Transform Sequence Length Fast Algorithm Mapping Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bi and L. W. Yu, DOT algorithms for composite sequence lengths, IEEE Trans. Signal Process., vol. 46, no. 3, 554–562, 1998.MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Bi, Fast algorithms for type-III DCT of composite sequence lengths, IEEE Trans. Signal Process., vol. 47, no. 7, 2053–2059, 1999.MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Bi, Index mapping for prime factor algorithm of discrete cosine transform, Electron. Lett., vol. 35, no. 3, 198–200,1999.CrossRefGoogle Scholar
  4. 4.
    S. C. Chan and K. L. Ho, Efficient index mapping for computing discrete cosine trans-form, Electron. Lett., vol. 25, no. 22, 1499–1500, 1989.MATHCrossRefGoogle Scholar
  5. 5.
    Y. H. Chan and W. C Siu, Mixed-radix discrete cosine transform, IEEE Trans. Signal process., vol. 41, no. 11, 3157–3161, 1993.CrossRefGoogle Scholar
  6. 6.
    D. C. Kar and V. V. B. Tao, On the prime factor decomposition algorithm for the discrete sine transform, IEEE Trans. Signal Process., vol. 42, no. 11, 3258–3260, 1994.CrossRefGoogle Scholar
  7. 7.
    B. G. Lee, A new algorithm to compute the discrete cosine transform, IEEE Trans. Acoust, Speech, Signal Processing, vol. ASSP-32. no. 12, 1243–1245, 1983.Google Scholar
  8. 8.
    B. G. Lee, Input and output index mapping for a prime-factor-decomposed computation of discrete cosine transform, IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 2, 237–244, 1989.MATHCrossRefGoogle Scholar
  9. 9.
    P. Lee and Fang-Yu Huang, An efficient prime-factor algorithm for the discrete cosine transform and its hardware implementations, IEEE Trans. Acoust, Speech, Signal Pro-cess., vol. 42, no. 8, 1996–2005, 1994.Google Scholar
  10. 10.
    H. S. Malvar, Fast computation of the discrete cosine transform and the discrete Hartley transform, IEEE Trans. Acoust., Speech. Signal Process., vol. ASSP-35, no. 10, 1484–1485, 1987.CrossRefGoogle Scholar
  11. 11.
    H. S. Malvar, Signal Processing with Lapped Transforms, Norwood, MA, Artech House, 1991.Google Scholar
  12. 12.
    A. D. Poularikas, The Transforms and Applications Handbook, Boca Raton, Fla.: CRC Press, 2000.CrossRefGoogle Scholar
  13. 13.
    K. R. Rao and P. Yip, Discrete Cosine Transform. Algorithms, Advantages and Appli-cations, Chap. 7, Academic Press, New York, 1990.Google Scholar
  14. 14.
    N. R. Murthy and M. N. S. Swampy, On the on-line computation of DCT-IV and DOST- IV transforms, IEEE Trans. Signal Process., vol. 43, no. 5, 1249–1251, 1995.CrossRefGoogle Scholar
  15. 15.
    T. C. Tan, G. Bi, Y. Zeng and H. N. Tan, DCT hardware structure for sequentially presented data, Signal Processing, vol. 81, 2333–2342, 2001.MATHCrossRefGoogle Scholar
  16. 16.
    A. Tatsaki, C. Dre, T. Storaities and C. Goutis, Prime-factor DCT algorithms, IEEE Trans. Signal Process., vol. 43, no. 3, 772–776, 1995.CrossRefGoogle Scholar
  17. 17.
    Z. Wang, Interpolation using the discrete cosine transform: Reconsideration, Electron. Lett, vol. 29, no. 2, 198–200, 1993.CrossRefGoogle Scholar
  18. 18.
    Z. Wang, On computing the discrete Fourier and cosine transforms, IEEE Trans. Acoust., Speech, Signal Process, vol. ASSP-33, 1985.Google Scholar
  19. 19.
    L. N. Wu, Comment on “On the shift property of DCTs and DSTs,” IEEE Trans. Acoust, Speech, Signal Process., vol. ASSP-38, 186–190, 1990.CrossRefGoogle Scholar
  20. 20.
    P. N. Yang and M. J. Narashimha, Prime factor decomposition of the discrete cosine transform and its hardware realization, Proc. IEEE ICASSP, 642–644, 1986.Google Scholar
  21. 21.
    P. Yip and K. R. Rao, On the shift property of DCTs and DSTs, IEEE Trans. Acoust, Speech, Signal Process., vol. ASSP-35, no. 3, 404–406, 1987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations