Fast Algorithms for MD Discrete Hartley Transform

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter presents a number of fast algorithms for the computation of multidimensional (MD) discrete Hartley transform (DHT).


Computational Complexity Discrete Fourier Transform Fast Algorithm Arithmetic Operation Primitive Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Proceedings of IEEE (Special issue on Hartley transform), vol. 82, no. 3, 1994.Google Scholar
  2. 2.
    T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, p. 210, 1986.Google Scholar
  3. 3.
    G. Bi, Split-radix algorithm for 2D discrete Hartley transform, Signal Processing, vol. 63, no. 1, 45–53, 1997.MATHCrossRefGoogle Scholar
  4. 4.
    G. Bi and J. Liu, Fast odd-factor algorithm for discrete W transform, Electron. Lett, vol. 34, no. 5, 431–433, 1998.CrossRefGoogle Scholar
  5. 5.
    G. Bi and C. Lu, Prime-factor algorithms for generalized discrete Hartley transform, Electron. Lett, vol. 35, no. 20, 1708–1710, 1999.CrossRefGoogle Scholar
  6. 6.
    R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1984.Google Scholar
  7. 7.
    T. Bortfeld and W. Dinter, Calculation of multidimensional Hartley transform using one dimensional Fourier transform, IEEE Trans. Signal Process., vol. 42, no. 5, 1306–1310, 1995.CrossRefGoogle Scholar
  8. 8.
    S. Boussakta and A. G. J. Holt, Fast multidimensional discrete Hartley transform using Fermat number transform, IEE Proc. G, vol. 135, 253–257, 1988.Google Scholar
  9. 9.
    R. N. Bracewell, The Hartley Transform, Oxford University Press, London, 1986.MATHGoogle Scholar
  10. 10.
    R. N. Bracewell and O. Buneman, Fast two-dimensional Hartley transform, Proc. IEEE, vol. 74, no.5, 1282–1283, 1986.CrossRefGoogle Scholar
  11. 11.
    V. Britanak and K. R. Rao, The fast generalized discrete Fourier transforms: a unified approach to the discrete sinusoidal transforms computation, Signal Processing, vol. 79, no. 2, 135–150, 1999.MATHCrossRefGoogle Scholar
  12. 12.
    O. Buneman, Multidimensional Hartley transform, Proc. IEEE, vol. 75, no. 2, 267, 1987.CrossRefGoogle Scholar
  13. 13.
    S. C. Chan and K. L. Ho, Split vector-radix fast Fourier algorithm, IEEE Trans. Signal Process., vol. 40, no. 8, 2029–2039, 1992.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    S. C. Chan and K. L. Ho, Polynomial transform fast Hartley transform, Electron. Lett, vol. 26, no. 21, 1914–1916, 1990.MATHCrossRefGoogle Scholar
  15. 15.
    C. Dubost, S. Desclos and A. Zerguerras, New radix-3 FHT algorithm, Electron. Lett, vol. 26, no. 18, 1537–1538, 1990.CrossRefGoogle Scholar
  16. 16.
    H. Hao and R. N. Bracewell, A three dimensional DFT algorithm using fast Hartley transform, Proc. IEEE, vol. 75, no. 2, 264–266, 1987.CrossRefGoogle Scholar
  17. 17.
    N.-C. Hu, H.-I. Chang and F. F. Lu, Fast computation of the two dimensional generalized discrete Hartley transforms, IEE Proc. Vis. Image Signal Process., vol. 142, no. 1, 35–39, 1995.Google Scholar
  18. 18.
    Z. R. Jiang and Y. H. Zeng, Polynomial transform transform and its applications, Na-tional University of Defense Technology Press, P. R. China, 1989.Google Scholar
  19. 19.
    Z. R. Jiang, Y. H. Zeng and P. N. Yu, Fast Algorithms, National University of Defense Technology Press, P. R. China, 1994.Google Scholar
  20. 20.
    E. A. Jonckheere and W. Ma, Split-radix fast Hartley transform in one and two dimensions, IEEE Trans. Signal Process., vol. 39, no. 2, 499–503, 1991.MATHCrossRefGoogle Scholar
  21. 21.
    A. Kojima, N. Sakurai and J. Kishigami, Motion detection using 3D-FFT spectrum, IEEE ICASSP, V213–216, 1993Google Scholar
  22. 22.
    P. K. Meher, J. K. Satapathy and G. Panda, New high-speed prime-factor algorithm for discrete Hartley transform, IEE Proceedings F, vol. 140, no. 1, 63–70, 1993.Google Scholar
  23. 23.
    Z. J. Mou and P. Duhamel, In-place butterfly-style FFT of 2-D real sequences, IEEE Trans. Acustics, Speech, Signal Process., ASSP-36, no. 10, 1642–1650, 1988.CrossRefGoogle Scholar
  24. 24.
    H. J. Nussbaumer, Fast Fourier Transform and Convolutional Algorithms, Springer- Verlag, New York, 1981.CrossRefGoogle Scholar
  25. 25.
    B. Porat and B. Friedlander, A frequency domain algorithm for multiframe detection and estimation of dim targets, IEEE Trans, Pattern Analysis Machine Intelligence, vol. 12, no. 4, 398–401, 1990.CrossRefGoogle Scholar
  26. 26.
    H. V. Sorensen, D. L. Jones, S. Burrus and M. T. Heideman, On computing the discrete Hartley transform, IEEE Trans. Acustics, Speech, Signal process., ASSP-33, no. 4, 1231–1238, 1985.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Z. Wang, The fast W transform-algorithms and programs, Science in China (series A), vol. 32, 338–350, 1989.MATHGoogle Scholar
  28. 28.
    Z. Wang and B. R. Hunt, The discrete W transform, Appl. Math. Comput., vol. 16, 19–48, 1985.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    J. L. Wu and S. Pei, The vector split-radix algorithm for 2D DHT, IEEE Trans. Signal Process., vol. 41, no. 2, 960–965, 1993.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    D. Yang, New fast algorithm to compute two-dimensional discrete Hartley transform, Electron. Lett., vol. 25, no. 25, 1705–1706, 1989.CrossRefGoogle Scholar
  31. 31.
    Y. H. Zeng and X. Li, Multidimensional polynomial transform algorithm for multidimen-sional discrete W transform, IEEE Trans. Signal Process., vol. 47, vol. 7, 2050–2053, 1999.Google Scholar
  32. 32.
    Y. H. Zeng, L. Z. Cheng and M. Zhou, Parallel Algorithms for Digital Signal Processing, National University of Defense Technology Press, Changsha, P. R. China 1989. (in Chinese).Google Scholar
  33. 33.
    Y. H. Zeng, G. Bi and A. R. Leyman, Polynomial transform algorithms for multi-dimensional discrete Hartley transform, Proc. IEEE International Symposium Circuits Systems, Geneva, Switzerland, V517–520, 2000.Google Scholar
  34. 34.
    Y. H. Zeng, G. Bi and A. C. Kot, Combined polynomial transform and radix-g algorithm for MD discrete W transform, IEEE Trans. Signal Process., vol. 49, no.3, 634–641, 2001.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. H. Zeng and Z. R. Jiang, A unified fast algorithm for the discrete W transform with arbitrary length, Chinese J. Num. Math. & Appl, Allerton Press, New York, vol. 18, no. 4, 85–92, 1996.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations