Advertisement

Fast Algorithms for 1D Discrete Hartley Transform

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

This chapter is devoted to new fast algorithms for computation of the four types of one-dimensional (1D) discrete Hartley transforms (DHTs).

Keywords

Computational Complexity Discrete Fourier Transform Sequence Length Fast Algorithm Arithmetic Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Anupindi, S. B. Narayanan and K. M. M. Prabhu, New radix-3 algorithm, Electron. Lett, vol. 26, no. 18, 1537–1539, 1990.CrossRefGoogle Scholar
  2. 2.
    G. Bi, New split-radix algorithm for the discrete Hartley transform, IEEE Trans. Signal Process., vol. 45, no. 2, 297–302, 1997.CrossRefGoogle Scholar
  3. 3.
    G. Bi and Y. Chen, Fast generalised DFT and DHT algorithms, Signal Processing, vol. 65, 383–390, 1998.MATHCrossRefGoogle Scholar
  4. 4.
    G. Bi, On computation of the discrete W transform, IEEE Trans. Signal Process., vol. 47, no. 5, 1450–1453, 1999.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    , G. Bi and J. Liu, Fast odd-factor algorithm for discrete W transform, Electron. Lett., vol. 34, no. 5, 431–433, 1998.CrossRefGoogle Scholar
  6. 6.
    G. Bi and C. Lu, Prime factor algorithms for generalised discrete Hartley transform, Electron. Lett., vol. 35, no. 20, 1708–1710, 1999.CrossRefGoogle Scholar
  7. 7.
    G. Bi, Y. Chen and Y. Zeng, Fast algorithms for generalised discrete Hartley transform of composite sequence lengths, IEEE Trans. Signal Process., vol. 47, no. 9, 893–901, 2000.MathSciNetMATHGoogle Scholar
  8. 8.
    G. Bi, Fast algorithms for generalised discrete Hartley transform, Circuits, Systems, Computers, vol. 10, no. 1, 77–83, 2000.Google Scholar
  9. 9.
    G. E. J. Bold, A comparison of the time involved in computing fast Hartley and fast Fourier transforms, Proceedings of IEEE, vol. 73, no. 12, 1863–1864, 1985.CrossRefGoogle Scholar
  10. 10.
    S. C. Chan and K. L. Ho, Polynomial transform fast Hartley transform, IEEE Int. Sym. Circuits and System, 642–645, 1991.Google Scholar
  11. 11.
    Y. H. Chan and W. C. Siu, New fast discrete Hartley transform algorithm, Electron. Lett, vol. 27, no. 4, 347–349, 1991.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    P. Duhamel and M. Vetterli, Improved Fourier and Hartley transform algorithm: appli-cation to cyclic convolution of real data, IEEE Trans. Acoust, Speech, Signal Process., vol. ASSP-35, no. 6, 818–824, 1987.CrossRefGoogle Scholar
  13. 13.
    D. M. W. Evans, An improved digit-reversal permutation algorithm for the fast Fourier and Hartley transforms, IEEE Trans. Acoust, Speech, Signal Process., 1120–1125, 1987.Google Scholar
  14. 14.
    I. J. Good, The relationship between two fast Fourier transforms, IEEE Trans. Com-puters, vol. C-20, 310–317, 1971.CrossRefGoogle Scholar
  15. 15.
    M. T. Heideman, C. S. Burrus and H. W Johnson, Prime-factor FFT algorithm for real-valued series, ICASSP, 28A.7.1–28A.7.4, 1984.Google Scholar
  16. 16.
    H. S. Hou, The fast Hartley transform algorithm, IEEE Trans. Computers, vol. C-36, no. 2, 147–156, 1987.CrossRefGoogle Scholar
  17. 17.
    N. C. Hu, H. I. Chang and O. K. Ersoy, Generalized discrete Hartley transforms, IEEE Trans. Signal Process., vol. 40, no. 12, 2931–2940, 1992.MATHCrossRefGoogle Scholar
  18. 18.
    E. A. Jonckheere and C. W. Ma, Split-radix fast Hartley transform in one and two dimensions, IEEE Trans. Signal Process, vol. 39, no. 2, 499–503, 1991.MATHCrossRefGoogle Scholar
  19. 19.
    J. C. Liu and T. P. Lin, Short-time Hartley transform, IEE Proceedings-F, vol. 140, no. 3, 171–174, 1993.Google Scholar
  20. 20.
    D. Liu, D. Wang and Z. Wang, Interpolation using Hartley transform, Electron. Lett., vol. 28, no. 2, 209–210, 1992.MATHCrossRefGoogle Scholar
  21. 21.
    D. P. K. Lun and W. C. Siu, Fast radix-3/9 discrete Hartley transform, IEEE Trans. Signal Process., vol. 41, no. 7, 2494–2499, 1993.MATHCrossRefGoogle Scholar
  22. 22.
    D. P. K. Lun and Wan-Chi Siu, On prime factor mapping for the discrete Hartley transform, IEEE Trans. Signal Process., vol. 40, no. 6, 1399–1411, 1992.MATHCrossRefGoogle Scholar
  23. 23.
    H. S. Malvar, Fast computation of the discrete cosine transform and the discrete Hartley transform, IEEE Trans. Acoust, Speech, Signal Process., vol. ASSP-35, no. 10, 1484–1485, 1987.Google Scholar
  24. 24.
    H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, London, 1992.Google Scholar
  25. 25.
    P. K. Meher, J. K. Satapathy and G. Panda, New high-speed prime-factor algorithm for discrete Hartley transform, IEE Proceedings-F, vol. 140, no. 1, 63–70, 1993.Google Scholar
  26. 26.
    R. P. Millane, Analytic properties of the Hartley transform and their implications, Pro-ceedings of IEEE, vol. 82, no. 3, 413–428, 1994.CrossRefGoogle Scholar
  27. 27.
    H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Springer-Verlag, New York, 1981.MATHCrossRefGoogle Scholar
  28. 28.
    Soo-Chang Pei and Sy-Been Jaw, In-place in-order mixed radix fast Hartley transforms, Signal Processing, vol. 48, 123–134, 1996.MATHCrossRefGoogle Scholar
  29. 29.
    Soo-Chang Pei and Ja-Ling Wu, Split-radix fast Hartley transform, Electron. Lett., vol. 22, no. 1, 26–27, 1986.CrossRefGoogle Scholar
  30. 30.
    M. Popovic and D. Sevic, A new look at the comparison of the fast Hartley and Fourier transforms, IEEE Trans. Signal Process., vol. 42, no. 8, 2178–2182, 1994.CrossRefGoogle Scholar
  31. 31.
    A. D. Poularikas, The Transforms and Applications Handbook, Chapter 4, IEEE Press, Wachington, D. C 1996.Google Scholar
  32. 32.
    H. V. Sorensen, D. L. Jones, C. S. Burrus and M. T. Heideman, On computing the discrete Hartley transform, IEEE Trans. Acoust, Speech, Signal Process., vol. ASSP- 33, no. 4, 1231–1238, 1985.Google Scholar
  33. 33.
    P. R. Uniyal, Transforming real-valued sequences: fast Fourier versus fast Hartley trans-form algorithms, IEEE Trans. Signal Process., vol. 42, no. 11, 3249–3254, 1994.CrossRefGoogle Scholar
  34. 34.
    K. Vassiliadis, P. Agelidis and G Sergiadis, Single-channel demodulator and Hartley transform in MRI, IEEE Trans. Medical Imaging, vol. 10, no. 4, 638–641, 1991.CrossRefGoogle Scholar
  35. 35.
    M. Vetterli and P. Duhamel, Split-radix algorithms for length pm DFT’s, IEEE Trans. Acoust., Speech, Signal Processing,vol. 37, no. 1, 57–64, 1989.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Z. Wang, Harmonic analysis with a real frequency function. I. Aperiodic case, Appl. Math. Comput., vol. 9, 53–73; II. Periodic and bounded cases, vol. 9, 153–163; III. Data sequence, vol. 9, 245–255, 1981.Google Scholar
  37. 37.
    Z. Wang, Comments on generalised discrete Hartley transform, IEEE Trans. Signal Process., vol. 43, no. 7, 1711–1712, 1995.CrossRefGoogle Scholar
  38. 38.
    Z. Wang, A prime factor fast W transform algorithm, IEEE Trans. Signal Process., vol. 40, no. 9, 2361–2368, 1992.CrossRefGoogle Scholar
  39. 39.
    Z. Wang, The generalised discrete W transform and its application to interpolation, 26th Asilomar Conference, vol. 1, 241–245, 1992.Google Scholar
  40. 40.
    J. Xi and J. F. Chicharo, Shift properties of discrete W transforms and real time discrete W analyzers, IEEE Trans. Circuits Syst. II, vol. 44, no. 1, 41–45, 1997.MATHCrossRefGoogle Scholar
  41. 41.
    N. J. Zhao, In-place radix-3 fast Hartley transform algorithm, Electron. Lett., vol. 28, no. 3, 319–321, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations