Polynomial Transforms and Their Fast Algorithms

  • Guoan Bi
  • Yonghong Zeng
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


This chapter presents some essential and important concepts that are frequently used in the theory of polynomial transforms and fast algorithms.


Fast Algorithm Diophantine Equation Primitive Root Chinese Remainder Theorem Residue Number System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Auslander, E. Feig and S. Winograd, Abelian semi-simple algebra and algorithms for the discrete Fourier transform, Adv. Appl. Math., vol. 5, 31–55, 1984.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    R. E. Blahut, Fast Algorithms for Digital Signal Processing, Addison-Wesley, Reading, MA, 1984.Google Scholar
  3. 3.
    P. Duhamel and C. Guillemot, Polynomial transform computation of the 2-D DOT, Proc. ICASSP, 1515–1518, 1990.Google Scholar
  4. 4.
    Z. R. Jiang and Y. H. Zeng, Polynomial Transform and its Applications, National Uni-versity of Defense Technology Press, Changsha, P. R. China, 1989 (in Chinese).Google Scholar
  5. 5.
    Z. R. Jiang, Y. H. Zeng and P. N. Yu, Fast Algorithms, National University of Defense Technology Press, Changsha, P. R. China, 1994 (in Chinese).Google Scholar
  6. 6.
    E. V. Labunets, V. G. Labunets, K. Egiazarian and J. Astola, New fast algorithms of multidimensional Fourier and Radon discrete transforms, Proc. ICASSP, 3193–3196, 1999.Google Scholar
  7. 7.
    W. Ma, Algorithms for computing two-dimensional discrete Hartley transform of size p n x pn, Electron. Lett., vol. 26, no. 11, 1795–1797, 1990.CrossRefGoogle Scholar
  8. 8.
    J. H. McClellan and C.M. Radar, Number Theory in Digital Signal Processing, Prentice- Hall, Inc., Englewood Cliffs, NJ, 1979.Google Scholar
  9. 9.
    H. J. Nussbaumer, Fast Fourier Transform and Convolutional Algorithms, Springer- Verlag, New York, 1981.CrossRefGoogle Scholar
  10. 10.
    H. J. Nussbaumer and P. Quandalle, Computation of convolutions and discrete Fourier transforms by polynomial transform, IBM J. Res. Develop., vol. 22, no. 2, 134–144, 1978.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    H. J. Nussbaumer, New polynomial transform algorithms for multi-dimensional DFT’s and convolutions, IEEE Trans. ASSP, vol. 29, no. 1, 74–84, 1981.MATHCrossRefGoogle Scholar
  12. 12.
    J. Prado and P. Duhamel, A polynomial transform based computation of the 2-D DCT with minimum multiplicative complexity, Proc. ICASSP, vol. 3, 1347–1350, 1996.Google Scholar
  13. 13.
    K. H. Rosen, Elementary Number Theory, Addison-Wesley, Reading MA, fourth edition, 2000.MATHGoogle Scholar
  14. 14.
    M. R. Schroeder, Number Theory in Science and Communication, Springer-Verlag, New York, 1986.MATHGoogle Scholar
  15. 15.
    M. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor, Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press, Washington, 1986.MATHGoogle Scholar
  16. 16.
    Y. H. Zeng, G. Bi and A. R. Leyman, New polynomial transform algorithm for multidi-mensional DCT, IEEE Trans. Signal Process., vol. 48, no. 10, 2814–2821, 2000.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Y. H. Zeng, G. Bi and A. C. Kot, New algorithm for multidimensional type-III DCT, IEEE Trans. Circuits Syst. II, vol. 47, no. 12, 1523–1529, 2000.MATHCrossRefGoogle Scholar
  18. 18.
    Y. H. Zeng, G. Bi and A. R. Leyman, New algorithm for r-dimensional DCT-II with size q l1 x q l2 x • • • x qlr, IEE Proc, Vision, Image Signal Process., vol. 148, no. 1, 1–8, 2001.CrossRefGoogle Scholar
  19. 19.
    Y. H. Zeng, L. Z. Cheng and M. Zhou, Parallel algorithms for digital signal process-ing, National University of Defense Technology Press, Changsha, P. R. China, 1998 (in Chinese).Google Scholar
  20. 20.
    Y. H. Zeng and X. M. Li, Multidimensional polynomial transform algorithms for mul-tidimensional discrete W transform, IEEE Trans. Signal Process., vol. 47, no. 7, 2050–2053, 1999.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Y. H. Zeng, G. Bi and A. C. Kot, Combined polynomial transform and radix-q algorithm for MD discrete W transform, IEEE Trans. Signal Process., vol. 49, no. 3, 634–641, 2001.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Guoan Bi
    • 1
  • Yonghong Zeng
    • 2
  1. 1.School of Electrical and Electronic EngineeringNanyang Technical UniversitySingaporeSingapore
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong

Personalised recommendations