An Introduction to Irregular Weyl-Heisenberg Frames

  • Peter G. Casazza
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We give an introduction to irregular Weyl-Heisenberg (WH) frames showing the latest developments and open problems. We provide several new results for semi-irregular WH-frames and also give new and more accessible proofs for several results from the literature.


Tight Frame Gabor Frame Frame Operator Frame Bound Parseval Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Balan, Stability theorems for Fourier frames and wavelet Riesz bases.Journal of Fourier Analysis and Applications3 (No. 5):499–504, 1997.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Deficits and excesses of frames. InAdvances in Computational Mathematics: Special issue on frames18:93–116, 2003.Google Scholar
  3. [3]
    R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Excesses of Gabor frames.Applied and Computational Harmonic Analysis14:87–116, 2003.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    K. Bittner and C. C. Chui, Gabor frames with arbitrary windows. InApproximation Theory XC. K. Chui, L. L. Schumaker, and J. Steckler (eds.). Vanderbilt University Press, 2002.Google Scholar
  5. [5]
    P. G. Casazza, Modern tools for Weyl-Heisenberg (Gabor) frame theory.Advances in Imaging and Electron Physics115:1–127, 2000.CrossRefGoogle Scholar
  6. [6]
    P. G. Casazza and O. Christensen, Classifying certain irregular Gabor frames.Preprint. Google Scholar
  7. [7]
    P. G. Casazza and O. Christensen, Gabor frames over semi-irregular lattices.Preprint. Google Scholar
  8. [8]
    P. G. Casazza, O. Christensen, and A. J. E. M. Janssen, Weyl-Heisenberg frames, translation invariant systems and the Walnut representation.Journal of Functional Analysis180:85–147,2001.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    P. G. Casazza, O. Christensen, and A. J. E. M. Janssen, Classifying tight Weyl-Heisenberg frames.Contemporary Mathematics247:131–148, 1999.MathSciNetCrossRefGoogle Scholar
  10. [10]
    P. G. Casazza and N. J. Kalton, Roots of complex polynomials and Weyl-Heisenberg frame sets.Proceedings of the American Mathematical Society130(8):2313–2318, 2002.Google Scholar
  11. [11]
    P. G. Casazza, O. Christensen, and M. C. Lammers, Perturbations of Weyl-Heisenberg frames.Preprint. Google Scholar
  12. [12]
    P. G. Casazza and M. C. Lammers, Analyzing the Weyl-Heisenberg frame identity.Applied and Computational Harmonic Analysis12:171–178, 2002.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    P. G. Casazza and M. C. Lammers, Bracket products for Weyl-Heisenberg frames. InApplied and Numerical Harmonic Analysis-Advances in Gabor AnalysisH. G. Fe-ichtinger and T. Strohmer (eds.). Birkhäuser, Boston, MA, 71–98, 2003.Google Scholar
  14. [14]
    O. Christensen, Perturbations of frames and applications to Gabor frames.In Gabor Analysis and Algorithms: Theory and ApplicationsH. G. Feichtinger and T. Strohmer (eds.). Birkhäuser, Boston, MA, 193–209, 1997.Google Scholar
  15. [15]
    O. Christensen, C. Deng, and C. Heil, Density of Gabor frames.Applied and Computational Harmonic Analysis7:292–304, 1999.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    I. Daubechies, The wavelet transform, time-frequency localization and signal analysisIEEE Transactions in Information Theory36 (No. 5):961–1005, 1990.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    I. Daubechies, A. Grossman, and Y. Meyer, Painless nonorthogonal expansions.Journal of Mathematical Physics27:1271–1283, 1986.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    R.J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series.Transactions of the American Mathematical Society72:341–366, 1952.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. G. Feichtinger, Banach convolution algebras of Wiener type, functions, series, operators.Proceedings of Budapest Conference, Colloq. Math. Soc. János Bolyai, 38:509–524, 1980.Google Scholar
  20. [20]
    H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decomposition.Journal of Functional Analysis86:307–340, 1989.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    H. G. Feichtinger and N. Kaiblinger, Changing the time-frequency lattice of a Gabor frame.Preprint. Google Scholar
  22. [22]
    H. G. Feichtinger and T. Strohmer (eds.), Gabor Analysis and Algorithms-Theory and Applications.Birkhäuser, Boston, MA, 1998.MATHGoogle Scholar
  23. [23]
    H. G. Feichtinger and G. Zimmerman, A Banach space of test functions for Gabor analysis. InGabor analysis and algorithms. Birkhäuser, Boston, MA, 123–170, 1998.CrossRefGoogle Scholar
  24. [24]
    J. Fournier and J. Stewart, Amalgams ofL pand Ip. Bulletin of the American Mathematical Society, 13:1–21, 1985.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    D. Gabor, Theory of communication.J. IEE (London)93:429–457, 1946.Google Scholar
  26. [26]
    K. Gröchenig, Foundations of Time-Frequency Analysis. Birkhäuser, Boston, MA, 2001.MATHGoogle Scholar
  27. [27]
    K. Gröchenig, Irregular sampling of wavelet and short time Fourier transforms. Constr. Approx., 9:283–297, 1993.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    K. Gröchenig, Describing functions: atomic decompositions versus frames.Monatsh. Math.112 (No. 1): 1–42, 1991.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    C. E. Heil and D. Walnut, Continuous and discrete wavelet transforms.SIAM Review31 (No. 4):628–666, 1989.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S. Jaffard, A density criterion for frames of complex exponentials.Michigan Math. Journal38:339–348, 1991.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    A. J. E. M. Janssen, The duality condition for Weyl-Heisenberg frames. InGabor Analysis and AlgorithmsBirkhäuser, Boston, MA, 33–84, 1998.CrossRefGoogle Scholar
  32. [32]
    A. J. E. M. Janssen, Zak transforms with few zeros and the tie. InApplied and Numerical Harmonic Analysis-Advances in Gabor AnalysisH. G. Feichtinger and T. Strohmer (eds.). Birkhäuser, Boston, MA, 31–70, 2003.Google Scholar
  33. [33]
    A. J. E. M. Janssen and T. Strohmer, Characterization and computation of canonical tight windows for Gabor frames.Preprint. Google Scholar
  34. [34]
    J. D. Lakey and Y. Wang, On perturbations of irregular Gabor frames.Preprint. Google Scholar
  35. [35]
    Y. Liu and Y. Wang, The uniformity of non-uniform Gabor bases.Preprint. Google Scholar
  36. [36]
    P. A. Olsen and K. Seip, A note on irregular discrete wavelet transforms.IEEE Transactions on Information Theory38 (No. 2):861–863, 1992.MathSciNetCrossRefGoogle Scholar
  37. [37]
    J. Ramanathan and T. Steger, Incompleteness of sparse coherent states.Applied and Computational Harmonic Analysis2:148–153, 1995.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    A. Rieffel, Von Neumann algebras associated with pairs of lattices in Lie groups. Math. Ann.,257(No.4):403–418,1981.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    A. Ron and Z. Shen, Frames and stable bases for shift-invariant subspaces of L2(Rd). Canadian Journal of Mathematics47:1051–1094, 1995.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in L2(Rd). Duke Math Journal89:237–282, 1997.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    J. Ortega-Certâ and K. Seip, Fourier frames.Annals of Math.155:789–806, 2002.CrossRefGoogle Scholar
  42. [42]
    D. Walnut, Weyl-Heisenberg wavelet expansions: existence and stability in weighted spaces. Ph.D. thesis, University of Maryland, College Park, MD, 1989.Google Scholar
  43. [43]
    N. Wiener, The Fourier Integral and Certain of Its Applications. MIT Press, Cambridge, MA, 1933.Google Scholar
  44. [44]
    R. YoungNonharmonic Fourier Series.Academic Press, New York, 2001.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Peter G. Casazza

There are no affiliations available

Personalised recommendations