Skip to main content

Summation formulas, from Poisson and Voronoi to the present

  • Chapter
Noncommutative Harmonic Analysis

Part of the book series: Progress in Mathematics ((PM,volume 220))

Abstract

Summation formulas have played a very important role in analysis and number theory, dating back to the Poisson summation formula. The modern formulation of Poisson summation asserts the equality

$$\sum\limits_{{n \in \mathbb{Z}}} {f(n) = \sum\limits_{{n \in \mathbb{Z}}} {\widehat{f}(n)} } \left( {\widehat{f}(t) = \int_{\mathbb{R}} {f(x){{e}^{{ - 2\pi ixt}}}dx} } \right),$$
(1.1)

valid (at least) for all Schwartz functions f. Let us take a brief historical detour to the beginning of the 20th century, before the notion of Schwartz function had been introduced. The custom then was to state (1.1) for more general functions f,such as functions of bounded variation, but supported on a finite interval, and usually in terms of the cosine:

$$\mathop{{{{\sum }^{\prime }}}}\limits_{{a \leqslant n \leqslant b}} f(n) = \smallint _{a}^{b}f(x)dx + 2\mathop{\sum }\limits_{{n = 1}}^{\infty } \smallint _{a}^{b}f(x)\cos (2\pi nx)dx;$$
(1.2)

the notation ∑′ signifies that at points n where f has a discontinuity - including the endpoints a, b - the term f (n) is to be interpreted as the average of the left and right limits of f(x). Indeed, the general case of (1.2) can be reduced to the special case of a = 0, b = 1, which amounts to the statement that the Fourier series of a periodic function of bounded variation converges pointwise, to the average of its left and right-hand limits.

Supported by NSF grant DMS-0122799

Supported in part by NSF grant DMS-0070714

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Casselman, Canonical extensions of Harish-Chandra modules to representations of G, Canad. J. Math. 41 (1989), 385–438.

    Article  MathSciNet  MATH  Google Scholar 

  2. J.B. Conrey and H. Iwaniec, Spacing of zeros of Hecke L-functions and the class number problem, Acta Arith. 103 (2002), 259–312.

    Article  MathSciNet  MATH  Google Scholar 

  3. Harold Davenport, Multiplicative Number Theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000, Revised and with a preface by Hugh L. Montgomery.

    Google Scholar 

  4. Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup. (4) 11 (1978), 471–542.

    MathSciNet  MATH  Google Scholar 

  5. Stephen S. Gelbart and Stephen D. Miller, Riemann’s zeta function and beyond, to appear in Bulletin AMS.

    Google Scholar 

  6. I.S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 5th ed., Academic Press Inc., Boston, MA, 1994, Translation edited and with a preface by Alan Jeffrey.

    MATH  Google Scholar 

  7. G.H. Hardy, On the expression of a number as the sum of two squares, Quarterly J. Math. (Oxford) 46 (1915), 263–283.

    MATH  Google Scholar 

  8. G.H. Hardy and E Landau, The lattice points of a circle, Proc. Royal Soc. A 105 (1924), 244–258.

    Article  MATH  Google Scholar 

  9. Dennis A. Hejhal and Barry N. Rackner, On the topography of Maass waveforms for PSL(2, Z), Experiment. Math. 1 (1992), 275–305. MR 95f:11037

    Article  MathSciNet  MATH  Google Scholar 

  10. M.N. Huxley, Exponential sums and lattice points. II, Proc. London Math. Soc (3) 66 (1993), 279–301, Corrigenda ibid 68, (1994), no. 2, p. 264.

    Article  MathSciNet  MATH  Google Scholar 

  11. _, Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, vol. 13, The Clarendon Press Oxford University Press, New York, 1996, Oxford Science Publications.

    Google Scholar 

  12. _, The influence of G. Voronoi on analytic number theory, in [30].

    Google Scholar 

  13. Aleksandar Ivić, The Riemann Zeta-function, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.

    Google Scholar 

  14. Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika, Automorphic forms on GL(3), Ann. of Math. (2) 109 (1979), 169–258.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), 123–191.

    Article  MathSciNet  MATH  Google Scholar 

  16. Edmund Landau, Über einen satz des Herrn Sierpiński, Giornale di Mathematiche di Battaglini 51 (1913), 73–81.

    Google Scholar 

  17. Edmund Landau, Über die Zerlegung der Zahlen in zwei Quadrate, Annali di Mathematica 20 (1913), 1–28.

    Article  Google Scholar 

  18. Stephen D. Miller, On the existence and temperedness of cusp forms for SL3 (ℤ), J. reine angew. Math. 533 (2001), 127–169.

    MathSciNet  MATH  Google Scholar 

  19. Stephen D. Miller and Wilfried Schmid, Automorphic Distributions, L-functions, and Voronoi Summation for GL(3), preprint.

    Google Scholar 

  20. _, Distributions and Analytic Continuation of Dirichlet Series, preprint.

    Google Scholar 

  21. M. Ram Murty, Problems in Analytic Number Theory, Graduate Texts in Mathematics, vol. 206, Springer-Verlag, New York, 2001, Readings in Mathematics.

    Google Scholar 

  22. Bernard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Mon. Not. Berlin Akad. (Nov. 1859), 671–680.

    Google Scholar 

  23. Peter Sarnak, Arithmetic quantum chaos, The Schur Lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236.

    Google Scholar 

  24. Peter Sarnak and Thomas C. Watson, in preparation.

    Google Scholar 

  25. W. Sierpiński, O pewnym zagadnieniu z rachunku funkcyj asymptotycznych [On a problem in the theory of asymptotic functions], Prace Mat. Fiz. 17 (1906), 77–118, See also Sur un problème du calcul des fonctions asymptotiques, pp. 79–109, in Oeuvres Choisies, Tome I., S. Hartman and A. Schinzel, ed., PWN-Éditions Scientifiques de Pologne, Warszawa, 1974. (Polish)

    Google Scholar 

  26. Christopher D. Sogge, Concerning the L P norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988).

    Google Scholar 

  27. G. Voronoi, Sur un problème du calcul des fonctions asymptotiques, J. reine angew. Math 126 (1903), 241–282.

    MATH  Google Scholar 

  28. G. Voronoi, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Annales Seientifiques de l’École Normale Supérieure 21 (1904), 203–267 and 459–533.

    Google Scholar 

  29. _, Sur le développment à l’aide des fonctions cylindriques, des sommes doubles ∑ f (pm 2+2qmn+2n 2), oú pm 2+2qmn +2n 2 est une forme positive à coefficients entiers, Verh. III Intern. Math. Kongr. in Heidelberg, Leipzig, 1905, pp. 241–245.

    Google Scholar 

  30. P. Engel and H. Syta (eds.), Voronoi’s Impact on Modern Science, Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine, 1998.

    Google Scholar 

  31. André Weil, On Eisenstein’s copy of the Disquisitiones, Algebraic Number Theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989.

    Google Scholar 

  32. _, Prehistory of the zeta-function, Number Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, MA, 1989, pp. 1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, S.D., Schmid, W. (2004). Summation formulas, from Poisson and Voronoi to the present. In: Delorme, P., Vergne, M. (eds) Noncommutative Harmonic Analysis. Progress in Mathematics, vol 220. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8204-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8204-0_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6489-7

  • Online ISBN: 978-0-8176-8204-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics