Advertisement

Stability of Three-and Four-Body Coulomb Systems

  • A. Martin
Conference paper
Part of the Trends in Mathematics book series (TM)

Summary

We discuss the stability of three-and four-particle systems interacting by pure Coulomb interactions, as a function of the masses and charges of the particles. We present a certain number of general properties which allow us to answer a certain number of questions without or with fewer numerical calculations.

Keywords

Trial Function Instability Region Total Orbital Angular Momentum Unnatural Parity State Natural Parity State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A.G. Armour and D.M. Schrader Can. J. Phys. 60 (1982), 581.CrossRefGoogle Scholar
  2. 2.
    J.D. Baker, D.E. Freund, R.N. Hill and J.D. Morgan Phys. Rev. A41 (1990), 1247.MathSciNetGoogle Scholar
  3. 3.
    D.R. Bates and T.R. Carson,Proc. Roy. Soc. (London) A234 (1956), 207.Google Scholar
  4. 4.
    H.A. Bethe Z. Phys. 57 (1929), 815.MATHCrossRefGoogle Scholar
  5. 5.
    Z. Chen and L. Spruch, Phys. Rev. A42 (1990), 133; F.H. Gertler, H.B. Snodgrass and L. Spruch, Phys. Rev. 172 (1968), 110.Google Scholar
  6. 6.
    G.W.F. Drake Phys. Rev. Lett. 24 (1970), 126.CrossRefGoogle Scholar
  7. 7.
    J. Fröhlich, G.M. Graf, J.-M. Richard and M. Seifert Phys. Rev. Lett. 71 (1993), 1332.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    S.S.Gerstein and V.V.Gusev Hyperfine Interactions 82(1993),185.CrossRefGoogle Scholar
  9. 9.
    S.S. Gerstein and L.I. Ponomarev, in Muon Physics Vol. III, V.W. Hughes and C.S. Wu, eds., Academic Press, New York, 1975.Google Scholar
  10. 10.
    V. Glaser, H. Grosse, A. Martin and W. Thirring, in Studies in Mathematical Physics, E.H. Lieb, B. Simon and A.S. Wightman, eds. Princeton University Press, 1976, 169.Google Scholar
  11. 11.
    H. Grosse and H. Pittner J. Math. Phys. 24 (1982), 1142.MathSciNetCrossRefGoogle Scholar
  12. 12.
    R.N. Hill, J. Math.Phys. 18 (1977), 2316.Google Scholar
  13. 13.
    H. Hogrève, unpublished, review at the International Workshop on Critical Stability of Few Body Quantum Systems, European Center of Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Trento, February 1997; M. Scheller et al., Science 270 (1995), 1160.Google Scholar
  14. 14.
    E.A. Hylleras and A. Ore Phys. Rev. 71 (1947), 493.CrossRefGoogle Scholar
  15. 15.
    A. Krikeb, A. Martin, J.-M. Richard and T.T. Wu Two-Body Problems 29 (2000), 237.Google Scholar
  16. 16.
    E.H. Lieb, Phys. Rev. A29 (1984), 3018.CrossRefGoogle Scholar
  17. 17.
    A. Martin, J.-M. Richard and T.T. Wu Phys. Rev. A46 (1992), 3697.CrossRefGoogle Scholar
  18. 18.
    A. Martin, J.-M. Richard and T.T. Wu Phys. Rev. A52 (1995), 2557.Google Scholar
  19. 19.
    A. Øre, Phys. Rev. 83 (1951), 665.CrossRefGoogle Scholar
  20. 20.
    J.-M. Richard, Phys. Rev. A49 (1994), 3573.Google Scholar
  21. 21.
    D.M. Schräder et al. Phys. Rev. Lett. 69 (1992), 57.CrossRefGoogle Scholar
  22. 22.
    M. Seifert, Thesis, ETH, Zürich (1993).Google Scholar
  23. 23.
    K. Varga, S. Fleck and J.-M. Richard,Europhysics Lett. 37 (1997), 183.CrossRefGoogle Scholar
  24. 24.
    J.A. Wheeler, Ann. N.Y. Acad.Sci. 48 (1946), 219.CrossRefGoogle Scholar
  25. 25.
    A.S. Wightman, Thesis, Princeton University (1946).Google Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • A. Martin
    • 1
    • 2
  1. 1.Theoretical Physics DivisionCERNGeneva 23Schweiz
  2. 2.LAPPANNECY LE VIEUXFrench

Personalised recommendations