On the Exit Statistics Theorem of Many-particle Quantum Scattering

  • D. Dürr
  • S. Teufel
Conference paper
Part of the Trends in Mathematics book series (TM)


We review the foundations of the scattering formalism for one-particle potential scattering and discuss the generalisation to the simplest case of many non-interacting particles. We point out that the “straight path motion” of the particles, which is achieved in the scattering regime, is at the heart of the crossing statistics of surfaces, which should be thought of as detector surfaces. We prove the relevant version of the many-particle flux across surfaces theorem and discuss what needs to be proven for the foundations of scattering theory in this context.


Wave Function Wave Packet Exit Time Straight Path Detector Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.O. Amrein, J.M. Jauch and K.B. Sinha Scattering Theory in Quantum Mechanics W.A. Benjamin, Inc., Reading, Massachusetts, 1977.Google Scholar
  2. 2.
    W.O. Amrein and D.B. Pearson, Flux and scattering into cones for long range and singular potentials Journal of Physics A 30 (1997), 5361–5379.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    J.S. Bell Speakable and Unspeakable in Quantum Mechanics Cambridge University Press, Cambridge, 1987.MATHGoogle Scholar
  4. 4.
    J.S. Bell, Against measurement Physics World. 3 (1990), 33–40.Google Scholar
  5. 5.
    K. Berndl, D. Dürr, S. Goldstein, G. Peruzzi, and N. Zanghi, On the global existence of Bohmian mechanics Comm. Math. Phys. 173 (1995), 647–673.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    D. Bohm and B.J. Hiley The Undivided Universe: An Ontological Interpretation of Quantum Theory Routledge, Chapman and Hall, London, 1993. D. Dürr, S. Goldstein and N. Zanghi, Bohmian mechanics as the foundations of quantum mechanics, in Bohmian Mechanics and Quantum Theory: An Appraisal edited by J. Cushing, A. Fine and S. Goldstein, Boston Studies in the Philosophy of Science Vol. 184, Kluwer Academic Press, 1996.Google Scholar
  7. 7.
    M. Born. Quantenmechanik der Stoßvorgänge Zeitschrift für Physik. 38 (1926), 803–827.CrossRefGoogle Scholar
  8. 8.
    C. Cohen-Tannoudji, B. Diu and F. Laloë Quantenmechanik. Teil 2 de Gruyter, Berlin, 1997; R. Haag: Local Quantum Physics 2nd edition, Springer-Verlag, Berlin, 1996.Google Scholar
  9. 9.
    J.-M. Combes, R.G. Newton and R. Shtokhamer, Scattering into cones and flux across surfaces Phys. Rev. D. 11 (1975), 366–372.Google Scholar
  10. 10.
    D. Dürr, S. Goldstein, T. Moser and N. Zanghi, in preparation.Google Scholar
  11. 11.
    D. Dürr, S. Goldstein, S. Teufel and N. Zanghi, Scattering theory from microscopic first principles Physica A 279 (2000), 416–431.CrossRefGoogle Scholar
  12. 12.
    D. Dürr, S. Goldstein and N. Zanghi, Quantum equilibrium and the origin of absolute uncertainty J. Stat. Phys. 67 (1992), 843–907.MATHCrossRefGoogle Scholar
  13. 13.
    G. Dell’Antonio and G. Panati, Zero-energy resonances and the flux-acrosssurfaces theorem, preprint, ArXive math-ph/0110034 (2001).Google Scholar
  14. 14.
    D. Dürr and S. Teufel, On the role of the flux in scattering theory, in Stochastic Processes, Physics and Geometry: New Interplays I Holden et al., eds. Conference Proceedings of the Canadian Mathematical Society, 2001.Google Scholar
  15. 15.
    G. Panati and A. Teta, The flux-across-surfaces theorem for a point interaction Hamiltonian, in Stochastic Processes, Physics and Geometry: New Interplays I Holden et al., eds. Conference Proceedings of the Canadian Mathematical Society, 2001.Google Scholar
  16. 16.
    M. Reed and B. Simon Methods of Modern Mathematical Physics III: Scattering Theory Academic Press, New York, 1978.Google Scholar
  17. 17.
    S. Teufel, D. Dürr and K. Münch-Berndl, The flux-across-surfaces theorem for short range potentials and wave functions without energy cutoffs, J. Math. Phys.40 (1999), 1901–1922.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    S. Weinberg The Quantum Theory of Fields Cambridge University Press, 1995.Google Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • D. Dürr
    • 1
  • S. Teufel
    • 2
  1. 1.Mathematisches InstitutLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Zentrum MathematikTechnische Universität MünchenMünchenGermany

Personalised recommendations