Colored Hofstadter Butterflies

  • J. E. Avron
Conference paper
Part of the Trends in Mathematics book series (TM)


I explain the thermodynamic significance, the duality and open problems associated with the two colored butterflies shown in Figures 2.1 and 2.4.


Landau Level Weak Magnetic Field Phase Coexistence Hall Conductance Canonical Commutation Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Avila and R. Krikorian, J. Puig, Cantor spectrum for the almost Mathieu operator, mp-arc 03–145. Scholar
  2. 2.
    M.Ya. Azbel. Soy. Phys. JETP 19 (1964), 634–645.Google Scholar
  3. 3.
    Thermodynamics and an Introduction to Thermostatics Wiley, 1985.Google Scholar
  4. 4.
    J.H. Condon Phys. Rev. 145 (1966), 526.CrossRefGoogle Scholar
  5. 5.
    R.H. Dalitz and Sir R. Peierls, Selected Scientific Papers of Sir Rudolph Peierls, World Scientific, 1997.Google Scholar
  6. 6.
    K. Falconer Fractal Geometry, Wiley, 1990.Google Scholar
  7. 7.
    O. Gat and J. Avron, Magnetic fingerprints of fractal spectra New J. Phys. 5(2003),44.1–44.8; Scholar
  8. 8.
    O. Gat and J. Avron, Semiclassical analysis and the magnetization of the Hofstadter model Phys. Rev. Lett. 91(2003), 186–801; Scholar
  9. 9.
    D. Hofstadter, Phys. Rev. B 14 (1976), 2239–2249.CrossRefGoogle Scholar
  10. 10.
    R. Israel, Convexity in the Theory of Lattice Gases, Princeton, 1979.Google Scholar
  11. 11.
    L.D. Landau and E.M. Lifshitz, Electrodynamics of continuous media, Butterworth-Heinemann, 1983.Google Scholar
  12. 12.
    E.M. Lifshitz and L.P. Pitaevskii Statistical Physics, Pergamon, 1980.Google Scholar
  13. 13.
    S.P. Novikov, JETP 52(1980), 511.Google Scholar
  14. 14.
    D. Osadchy, M.Sc. thesis, Technion, 2001.Google Scholar
  15. 15.
    D. Osadchy and J. Avron, Hofstadter butterfly as quantum phase diagram,J. Math. Phys. 19(2001), 5665–5671; Scholar
  16. 16.
    G. Panati, H. Spohn and S. Teufel,Phys. Rev. Lett. 88(2002), 250–405; and Scholar
  17. 17.
    A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, 1973.Google Scholar
  18. 18.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale, and M. den Nijs Phys. Rev. Lett. 49 (1982), 405–408.CrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • J. E. Avron
    • 1
  1. 1.Department of Physics TechnionHaifaIsrael

Personalised recommendations