Advertisement

Classical and Quantum: Some Mutual Clarifications

  • V. Scarani
Conference paper
Part of the Trends in Mathematics book series (TM)

Summary

This paper presents two unconventional links between quantum and classical physics. The first link appears in the study of quantum cryptography. In the presence of a spy, the quantum correlations shared by Alice and Bob are imperfect. One can either process the quantum information, recover perfect correlations and finally measure the quantum systems; or, one can perform the measurements first and then process the classical information. These two procedures tolerate exactly the same error rate for a wide class of attacks by the spy. The second link is drawn between the quantum notions of “no-cloning theorem” and “weak-measurements with post-selection”, and simple experiments using classical polarized light and ordinary telecom devices.

Keywords

Entangle State Polarization Mode Quantum Cryptography Weak Measurement Quantum Cloning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Acín, N. Gisin, L. Masanes, quant-ph/0303053, accepted in Phys. Rev. Lett. Google Scholar
  2. 2.
    A. Acín, N. Gisin, V. Scarani, quant-ph/0303009, accepted inQuant. Inf. Com put. Google Scholar
  3. 3.
    Y. Aharonov, D. Albert, L. Vaidman Phys. Rev. Lett. 60 (1988), 1351. Two recent reviews: Y. Aharonov, L. Vaidman, quant-ph/0105101 (2001), published in Time in Quantum Mechanics,J. G. Muga, R. Sala Mayato and I. L. Egusquiza, eds., Lecture Notes in Physics, Springer Verlag, 2002; and A.M. Steinberg, quant-ph/0302003 2003).Google Scholar
  4. 4.
    D. Bouwmeester, A. Ekert, A. Zeilinger (eds.) The Physics of Quantum Information,Springer-Verlag, Berlin, 2000.MATHGoogle Scholar
  5. 5.
    N. Brunner, A. Acín, D. Collins, N. Gisin, V. Scarani, quant-ph/0306108, accepted in Phys. Rev. Lett.; N. Brunner, quant-ph/0309055.Google Scholar
  6. 6.
    D. Bruss, M. Christandl, A. Ekert, B.-G. Englert, D. Kaszlikowski, C. Macchiavello, Phys. Rev. Lett. 91 (2003)Google Scholar
  7. 7.
    S. Fasel, N. Gisin, G. Ribordy, V. Scarani, H. Zbinden, Phys. Rev. Lett. 89 (2002) Google Scholar
  8. 8.
    C. Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, A. Peres, Phys. Rev. A 56 (1997)Google Scholar
  9. 9.
    N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, XXX Rev. Mod. Phys 74 (2002) Google Scholar
  10. 10.
    N. Gisin and S. Wolf, Phys. Rev. Lett. 83 (1999)Google Scholar
  11. 11.
    V. Scarani, N. Gisin Phys. Rev. Lett. 87 (2001)Google Scholar
  12. 12.
    C. Simon, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 84 (2000)Google Scholar
  13. 13.
    W.K. Wootters, W.H. Zurek, Nature. 299 (1982)Google Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • V. Scarani
    • 1
  1. 1.Group of Applied PhysicsUniversity of GenevaGeneva 4Switzerland

Personalised recommendations