Nonlinear Time-dependent Schrödinger Equations with Double-Well Potential

  • A. Sacchetti
Conference paper
Part of the Trends in Mathematics book series (TM)


We consider a class of Schrödinger equations with a symmetric double-well potential and a nonlinear perturbation. We show that, under certain conditions, the reduction of the time-dependent equation to a two-mode equation gives the dominant term of the solution with a precise estimate of the error.


Schrodinger Equation Semiclassical Limit Nonlinear Perturbation Nonlinear Schrodinger Equation Inversion Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Dalfovo, S. Giorgini, L.P. Pitavskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys . 71 (1999), 463–512.CrossRefGoogle Scholar
  2. 2.
    E.B. Davies, Symmetry breaking for a non-linear Schrödinger operator Comm. Math. Phys. 64 (1979), 191–210.MATHCrossRefGoogle Scholar
  3. 3.
    H.T. Davis, Introduction to nonlinear differential and integral equations, Dover Publ., New York, 1962.MATHGoogle Scholar
  4. 4.
    J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Func. Anal.32 (1979), 1–32.MathSciNetMATHGoogle Scholar
  5. 5.
    V. Grecchi, A. Martinez, Non-linear Stark effect and molecular localization, Comm. Math. Phys. 166 (1995), 533–48.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    V. Grecchi, A. Martinez, A. Sacchetti, Destruction of the beating effect for a non-linear Schrödinger equation. Comm. Math. Phys. 227(2002), 191–209.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley, London, 1969.MATHGoogle Scholar
  8. 8.
    G. Jona-Lasinio, C. Presilla, C. Toninelli, Interaction induced localization in a gas of pyramidal molecules, Phys. Rev. Lett. 88 (2002), 123001.CrossRefGoogle Scholar
  9. 9.
    C. Presilla, Interaction induced localization in a gas of pyramidal molecules. Proceedings of the conference Multiscale Methods in Quantum Mechanics: Theory and Experiment, Accademia Nazionale dei Lincei, Roma 16–20 December 2002. See G. Jona-Lasinio, C. Presilla, C. Toninelli, Chapter 10, this volume, pp. 119–27.Google Scholar
  10. 10.
    S. Raghavan, A. Smerzi, S. Fantoni, S.R. Shenoy, Coherent oscillations between two weakly coupled Bose-Einstein condensates: Josephson effects, 7r oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59, 620–33 (1999).CrossRefGoogle Scholar
  11. 11.
    A. Sacchetti, Nonlinear time-dependent Schrödinger equations: the GrossPitaevskii equation with double-well potential, preprint mp-arc 02–208 (2002). To be published in J. Evolution Equations.Google Scholar
  12. 12.
    A. Sacchetti, Nonlinear time-dependent one-dimensional Schrödinger equation with double well potential. SIAM J. Math. Anal. 35 (2004), 1160–76.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Springer-Verlag, New York, 1999.MATHGoogle Scholar
  14. 14.
    A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys. 133 (1990), 119–46.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    A. Vardi, On the role of intermolecular interactions in establishing chiral stability, J. Chem. Phys. 112(2000), 8743.CrossRefGoogle Scholar
  16. 16.
    M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87(1983), 567–76.MATHCrossRefGoogle Scholar
  17. 17.
    R. Weder, L PL P estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal. 170(2000), 37–68.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • A. Sacchetti
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations