Remarks on Time-dependent Schrödinger Equations, Bound States, and Coherent States

  • D. Robert
Conference paper
Part of the Trends in Mathematics book series (TM)


It has been well known from the beginning of quantum theory that there exist deep connections between the time evolution of a classical Hamiltonian system and the bound states for the Schrödinger equation, in particular in the semiclassical régime. These connections are well understood for integrable systems (Bohr—Sommerfeld quantization rules). But for more intricate systems (like classically chaotic Hamiltonian) the mathematical analysis of the bound states is much more difficult and there are few rigorous mathematical results. In this paper our goal is to revisit some of these results and to show that they can be proven, and sometimes improved, by using essentially two technics: the Wigner—Weyl calculus and the propagation of observables on one side, the propagation of coherent states on the other side. We want to emphasize that in our approach we get rather explicit estimates in terms of classical dynamics

The main ideas explained here, in particular the use of coherent states, are the results of several year of collaboration with Monique Combescure.


Coherent State Trace Formula Classical Flow Quantum Ergodicity Liouville Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouzouina A.,Robert D., Uniform semiclassical estimates for the propagation of observables, Duke Mathematical Journal. 111:2(2002), 223–252.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Brummelhuis R., Uribe A., A semiclassical trace formula for Schrödinger operators, Comm.Math. Phys. 136 (1991), 567–584.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Combescure M., Robert D., Ralston J., A proof of the Gutzwiller Semiclassical Formula Using Coherent States Decomposition, Commun. Math. Phys. 202 (1999), 463–480.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Combescure M., Robert D., Distribution of matrix elements and level spacings for classically chaotic systems, Ann. Inst. Henri Poincaré 61:4 (1994), 443–483.MathSciNetMATHGoogle Scholar
  5. 5.
    Combescure M., Robert D., Semiclassical sum rules and generalized coherent states, J. M. P. 36:12 (December 1995).MathSciNetGoogle Scholar
  6. 6.
    Combescure M., Robert D., Semiclassical spreading of quantum wave packet and applications near unstable fixed points of the classical flow, Asymptotic Analysis 14 (1997), 377–404.MathSciNetMATHGoogle Scholar
  7. 7.
    Combescure M., Robert D., Rigorous semiclassical results for the magnetic response of an electron gas, Reviews in Math. Phys. 13:9 (2001), 1055–1073.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Combescure M., Robert D., Semiclassical results in the linear response theory, Annals of Physics 305 (2003), 45–59.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    De Bièvre S., Robert D., Semiclassical propagation and the log he-1 time-barier, I. M. R. N. 12 (2003), 667–696.Google Scholar
  10. 10.
    Dozias S., thesis, DMI. ENS., Paris, 1994.Google Scholar
  11. 11.
    Duistermaat J.J., Guillemin V, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math. 29 (1975), 39–79.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Folland G.B., Harmonic Analysis in Phase Space, Annals of Math. Studies, Vol. 122, Princeton University Press, 1989.Google Scholar
  13. 13.
    Gutzwiller M., Periodic orbits and classical quantization conditions, J.Math. Phys. 12:3 (1971), 343–358.CrossRefGoogle Scholar
  14. 14.
    Hagedorn G., Semiclassical quantum mechanics, Ann. Phys. 135 (1981), 58–70; Ann. Inst. Henri Poincaré 42 (1985), 363–374.MathSciNetGoogle Scholar
  15. 15.
    Helfer B., Martinez A., Robert D., Ergodicité et limite semi-classique, CMP 109 (1987), 313–326.Google Scholar
  16. 16.
    Hörmander L, The spectral function of an elliptic operator, Acta. Math. 121 (1968), 193–218.MATHGoogle Scholar
  17. 17.
    Hörmander L. The Analysis of Linear Partial Differential Operators, Vols. I-IV, Springer-Verlag, 1983–85.CrossRefGoogle Scholar
  18. 18.
    Ivrii V., Microlocal Analysis and Precise Spectral Asymptotics, Springer, 1998.CrossRefGoogle Scholar
  19. 19.
    Littlejohn R.G., The semiclassical evolution of wave packets, Physics Report 138:45 (1986), 193–291.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Paul T., Semi-classical methods with emphasis on coherent states, in IMA Volumes in Mathematics and Applications , J. Rauch and B. Simon, eds., Vol. 95, Springer, 1997, 51–97.Google Scholar
  21. 21.
    Paul T., Uribe A., Sur la formule semi-classique des traces, Note CRAS 313:I (1991), 217–222.Google Scholar
  22. 22.
    Petkov V., Popov G., Semiclassical trace formula and clustering of eigenvalues for Schrödinger operators, Ann. I.H.P., Sect. Phys. Th 68 (1998), 17–83.MathSciNetMATHGoogle Scholar
  23. 23.
    Petkov V., Robert D., Asymptotique semi-classique du spectre d’hamiltoniens quantiques et trajectoires classiques périodiques, Comm. in PDE 10:4 (1985), 365–390.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Robert D., Autour de l’Approximation Semi-classique, Birkhäuser, Prog. Math., Vol. 68., 1987.Google Scholar
  25. 25.
    Robert D., Remarks on asymptotic solutions for time dependent Schrödinger equations. in Optimal control and partial differential equations, IOS Press, 188–197, (2001).Google Scholar
  26. 26.
    Sunada T., Quantum ergodicity, in Progress in Inverse Spectral Geometry, Andersson, Stig I. et al., eds., Birkhäuser, Basel Trends in Mathematics (1997), 175–196.Google Scholar
  27. 27.
    Volovoy A., Improved two-terms asymptotics for the eigenvalue distribution of an elliptic operator on a compact manifold, Comm. in P.D.E. 15:11 (1990), 1509–1563.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Wilkinson M., A semi-classical sum rule for matrix elements of classically chaotic systems, J. Phys. A: Math. Gen. 20 (1987), 2415–2423.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zelditch S., Quantum mixing, JFA 140 (1996), 68–86; and Quantum Dynamics from the Semi-classical Point of View , unpublished lectures, Institut Borel, II1P, Paris, 1996.Google Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • D. Robert
    • 1
  1. 1.Laboratoire de Mathématiques Jean Leray CNRS-UMR N° 6629Université de NantesNantes-Cedex 03France

Personalised recommendations