Classical versus Quantum Structures: The Case of Pyramidal Molecules

  • C. Presilla
  • G. Jona-Lasinio
  • C. Toninelli
Conference paper
Part of the Trends in Mathematics book series (TM)


In a previous paper we proposed a model to describe a gas of pyramidal molecules interacting via dipole-dipole interactions. The interaction modifies the tunneling properties between the classical equilibrium configurations of the single molecule and, for sufficiently high pressure, the molecules become localized in these classical configurations. The model explains quantitatively the shift to zero-frequency of the inversion line observed upon increase of the pressure in a gas of ammonia or deuterated ammonia. Here we analyze further the model especially with respect to stability questions.


Electric Dipole Moment Quantum Structure Nonlinear Eigenvalue Problem Chiral State Delocalized State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bleaney and J.H. Loubster Nature 161 (1948), 522.CrossRefGoogle Scholar
  2. 2.
    B. Bleaney and J.H. Loubster, Proc. Phys. Soc. (London) A63 (1950), 483.Google Scholar
  3. 3.
    G. Birnbaum and A. Maryott, Phys. Rev. 92 (1953), 270.CrossRefGoogle Scholar
  4. 4.
    P. Claverie and G. Jona-Lasinio, Phys. Rev. A 33 (1986), 2245.CrossRefGoogle Scholar
  5. 5.
    CRC Handbook of Chemistry and Physics 76th ed., edited by D.R. Lide, CRC Press, New York, 1995.Google Scholar
  6. 6.
    R. D’Agosta and C. Presilla, Phys. Rev. A 65 (2002), 043609.CrossRefGoogle Scholar
  7. 7.
    V. Grecchi and A. Martinez, Comm. Math. Phys. 166 (1995), 533.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    V. Grecchi, A. Martinez and A. Sacchetti, Comm. Math. Phys. 227 (2002), 191.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    V. Grecchi and A. Sacchetti, Phys. Rev. A 61 (2000), 052106.CrossRefGoogle Scholar
  10. 10.
    V. Grecchi and A. Sacchetti, J. Phys. A: Math. Gen. 37 (2004), 3527; Scholar
  11. 11.
    F. Hund Z. Phys. 43 (1927), 805.CrossRefGoogle Scholar
  12. 12.
    G. Jona-Lasinio and P. Claverie, Prog. Theor. Phys. Suppl. 86 (1986), 54.CrossRefGoogle Scholar
  13. 13.
    G. Jona-Lasinio, C. Presilla, and C. Toninelli, Phys. Rev. Lett. 88 (2002), 123001.CrossRefGoogle Scholar
  14. 14.
    G. Jona-Lasinio, C. Presilla, and C. Toninelli, in Mathematical Physics in Mathematics and Physics. Quantum and Operator Algebraic aspects Vol. 30, Fields Institute Communications, 2001, p. 207.Google Scholar
  15. 15.
    W.H. Keesom, Phys. Z. 22 (1921), 129.Google Scholar
  16. 16.
    C.H. Townes and A.L. Schawlow Microwave Spectroscopy Mc Graw-Hill, New York, 1955.Google Scholar
  17. 17.
    A.S. Wightman, Il nuovo Cimento 110B (1995), 751.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • C. Presilla
    • 1
  • G. Jona-Lasinio
    • 2
  • C. Toninelli
    • 3
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Istituto Nazionale di Fisica NucleareRomaItaly
  3. 3.Istituto Nazionale per la Fisica della MateriaUnità di Roma 1 and Center for Statistical Mechanics and ComplexityRomaItaly

Personalised recommendations