Organic Molecules and Decoherence Experiments in a Molecule Interferometer

  • M. Arndt
  • L. Hackermüller
  • K. Hornberger
  • A. Zeilinger
Conference paper
Part of the Trends in Mathematics book series (TM)


One of the basic objectives in the foundations of physics is to understand the detailed circumstances of the transition from pure quantum effects to classical appearances. This field has gained an even increased attention because of the fact that quantum phenomena on the mesoscopic or even macroscopic scale promise to be useful for future technologies, such as in lithography with clusters and molecules, quantum computing or highly sensitive quantum sensors.


Interference Pattern Interference Fringe Atom Interferometry Classical Appearance Transverse Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. V. Der Zouw and A. Zeilinger, Wave-particle duality of C60 molecules Nature, 401 (1999), 680–682.CrossRefGoogle Scholar
  2. 2.
    P. Blanchard, D. Giulini, E. Joos, C. Kiefer and I.-O. Stamatescu, HRSG. Decoherence: Theoretical, Experimental, and Conceptual Problems, Vol. 538, Lecture Notes in Physics, Springer-Verlag, Berlin, 2000.CrossRefGoogle Scholar
  3. 3.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press, 1993.Google Scholar
  4. 4.
    B. Brezger, M. Arndt and,A. Zeilinger, Concepts for near-field interferometers with large molecules J. Opt. B: Quantum Semiclass. Opt., 5(2003), S82—S89.CrossRefGoogle Scholar
  5. 5.
    B. Brezger, L. Hackermuller, S. Uttenthaler, J. Petschinka, M. Arndt and A. Zeilinger, Matter-wave interferometer for large molecules Phys. Rev. Lett., 88(2002), 100–404.CrossRefGoogle Scholar
  6. 6.
    J. Clauser and S. Li, Generalized Talbot—Lau atom interferometry, in Atom Interferometry, P. R. Berman Hrsg., Bd. 11, Academic Press, 1997, 121–151.Google Scholar
  7. 7.
    J. Clauser and M. Reinsch, New theoretical and experimental results in fresnel optics with applications to matter-wave and x-ray interferometry Applied Physics B, 54 (1992), 380.CrossRefGoogle Scholar
  8. 8.
    G. C. Ghirardi, A. Rimini and T. Weber, Unified dynamics for microscopic and macroscopic systems Phys. Rev. D, 34 (1986), 470–491.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    D. Giulini, E. Joos, C. Kiefer, J.Kupsch, O. Stamatescu and H. D. Zeh Decoherence and the Appearance of the Classical World in Quantum Theory, Springer-Verlag, Berlin, 1996.MATHCrossRefGoogle Scholar
  10. 10.
    L. Hackermuller, K. Hornberger, B. Brezger, A. Zeilinger and M. Arndt, Decoherence in a Talbot Lau interferometer: The influence of molecular scattering Applied Physics B, 77(2003), 781–787.CrossRefGoogle Scholar
  11. 11.
    L. Hackermuller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger and M. Arndt, Wave nature of biomolecules and fluorofullerenes Phys. Rev. Lett.,91 (2003), 90408.CrossRefGoogle Scholar
  12. 12.
    K. Hornberger and J. E. Sipe, Collisional decoherence reexamined Phys. Rev. A, 68(2003), 012–105.CrossRefGoogle Scholar
  13. 13.
    K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermuller, M. Arndt and A. Zeilinger, Collisional decoherence observed in matter wave interferometry Phys. Rev. Lett., 90 (2003), 160–401.CrossRefGoogle Scholar
  14. 14.
    E. Joos and H. D. Zeh, The emergence of classical properties through interaction with the environment Z. Phys. B., 59 (1985), 223–243.CrossRefGoogle Scholar
  15. 15.
    H. Kroto, J. Heath, S. O’brian, R. Curl and R. Smalley, C60: Buckminsterfullerene Nature, 318 (1985), 162–166.CrossRefGoogle Scholar
  16. 16.
    R. W. Marks, The Dymaxion World of Buckminster Fuller, Reinhold, New York, 1960.Google Scholar
  17. 17.
    O. Nairz, B. Brezger, M. Arndt and A. Zeilinger, Diffraction of complex molecules by structures made of light Phys. Rev. Lett., 87 (2001), 160401–1.CrossRefGoogle Scholar
  18. 18.
    R. Penrose, On gravity’s role in quantum state reduction Gen. Rel. Gray., 28 (1996), 581–600.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    A. Stibor et al. in preparation, 2003.Google Scholar
  20. 20.
    S. I. Troyanov, P. A. Troshin, O. V. Boltalina, I. N. Ioffe, L. N. Sidorov and E. Kemnitz, Two isomers of C60F48: An indented fullerene Angew. Chem. Int. Ed.,40 (2001), 22–85.CrossRefGoogle Scholar
  21. 21.
    H. D. Zeh, On the interpretation of measurement in quantum theory Found. Phys. 1 (1970), 69–76.CrossRefGoogle Scholar
  22. 22.
    W. H. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D, >,24(1981), 1516–1525.MathSciNetCrossRefGoogle Scholar
  23. 23.
    W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical Rev. Mod. Phys.,>,75 (2003), 715–775.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2004

Authors and Affiliations

  • M. Arndt
    • 1
  • L. Hackermüller
    • 1
  • K. Hornberger
    • 1
  • A. Zeilinger
    • 1
  1. 1.Institut für ExperimentalphysikUniversität WienWienAustria

Personalised recommendations