Plasma kinetic models: the Fokker-Planck-Landau equation

  • Laurent Desvillettes
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


In this work, we present an approach for the Landau equation based on the relationship between entropy and entropy dissipation. Thanks to the same estimate, we recover on one hand an explicit bound on the long time behavior of the spatially homogeneous equation, and on the other hand the strong L 1 compactness of the solutions of the spatially inhomogeneous equation.


Boltzmann Equation Entropy Production Landau Equation Large Time Behavior Logarithmic Sobolev Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. Alexandre and C. Villani. On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non line’aire.Google Scholar
  2. D. Bakry and M. Emery. Diffusions hypercontractives. in Sent. Proba. XIX, n. 1123 in Lecture Notes in Math., Springer, 177–206,1985.Google Scholar
  3. 3.
    H. Brdzis. Analyse Fonctionnelle. Masson, Paris, 1983.Google Scholar
  4. 4.
    E. A. Carlen and M. C. Carvalho. Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation. J. Stat. Phys., 67 (3–4): 575–608,1992.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    E. A. Carlen and M. C. Carvalho. Entropy production estimates for Boltzmann equations with physically realistic collision kernels. J. Stat. Phys., 74 (3–4): 743–782, 1994.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    C. Cercignani. The Boltzmann equation and its applications. Springer, New York, 1988.MATHCrossRefGoogle Scholar
  7. 7.
    S. Chapman and T.G. Cowling. The mathematical theory of non-uniform gases. Cambridge Univ. Press., London, 1952.Google Scholar
  8. 8.
    I. Csiszar. Information-type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung., 2: 299–318,1967.MathSciNetMATHGoogle Scholar
  9. 9.
    P. Degond and M. Lemou. Dispersion relations for the linearized Fokker-Planck equation. Arch. Rat. Mech. Anal, 138: 137–167, 1997.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    P. Degond, and B. Lucquin-Desreux. The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Mod. Meth. in Appl. Sci., 2: 2 (1992), 167–182.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    L. Desvillettes. On asymptotics of the Boltzmann equation when the collisions become grazing. Transp. Th. Stat. Phys., 21: 3 (1992), 259–276.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25, 1/2 (2000), 179–259.MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. Desvillettes and C. Villani. On the spatially homogeneous Landau equation for hard potentials. Part II: H-theorem and applications. Comm. Partial Differential Equations 25, 1/2 (2000), 261–298.MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. DiPerna and P.-L. Lions. On the Cauchy problem for the Boltzmann equation: Global existence and weak stability. Ann. Math., 130: 312–366,1989.MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. DiPerna, P.-L. Lions, Y. Meyer. L p regularity of velocity averages. Ann. I.H.P, Analyse non-lineaire, 8: 271–287,1991.MathSciNetMATHGoogle Scholar
  16. 16.
    F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour l’équation de transport et application au calcul de la valeur propre principale d’un opérateur de transport, C. R. Acad. Se, 301, 341–344,1985.MathSciNetMATHGoogle Scholar
  17. 17.
    F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation, J. Fund. Anal., 76,110–125,1988.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97: 1061–1083,1975.MathSciNetCrossRefGoogle Scholar
  19. 19.
    L. Gross. Logarithmic Sobolev inequalities and contractive properties of semigroups. In Dirichlet Forms, Lect. Notes Maths, 1563, Springer-Verlag, Berlin, 54–88,1992.Google Scholar
  20. 20.
    S. Kullback. A lower bound for discrimination information in terms of variation. IEEE Trans. Inf. The., 4: 126–127, 1967.CrossRefGoogle Scholar
  21. 21.
    E.M. Lifshitz and L.P. Pitaevskii. Physical kinetics. Perg. Press., Oxford, 1981.Google Scholar
  22. 22.
    P.-L. Lions. On Boltzmann and Landau equations. Phil. Trans. R. Soc. Lond., A, 346: 191–204, 1994.MATHCrossRefGoogle Scholar
  23. M.M. Rao., Z.D. Ren, Theory ofOrlicz Spaces Pure and Appl. Math., 146, N.-Y, Marcel Dekker Inc.Google Scholar
  24. 24.
    G. Toscani. Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation. Quart. Appl. Math., 57: 521–541, 1999.MathSciNetMATHGoogle Scholar
  25. 25.
    G. Toscani., C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys., 203:667–706,1999.MathSciNetCrossRefGoogle Scholar
  26. 26.
    G. Toscani., C. Villani, On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds. J. Statist. Phys., 98: 5/6,1279–1309, 2000.MathSciNetCrossRefGoogle Scholar
  27. 27.
    C. Villani. On the Cauchy problem for Landau equation: sequential stability, global existence. Adv. Diff. Eq., 1: 793–816, 1996.MathSciNetMATHGoogle Scholar
  28. 28.
    C. Villani. On the spatially homogeneous Landau equation for Maxwellian molecules. Math. Mod. Meth. Appl. Sci., 8: 957–983,1998.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    C. Villani. Cercignani’s conjecture is sometimes true and always almost true. To appear in Comm. Math. Phys. Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Laurent Desvillettes
    • 1
  1. 1.ENS de CachanCMLACachan CedexFrance

Personalised recommendations