Skip to main content

Abstract

The first part of this chapter contains a summary of the main properties of the Boltzmann equation: some popular models of the collision kernel, moments and physical quantities, weak formulation of the Boltzmann equation, the H-theorem, the moment equations, boundary conditions and scaling transformation. The second part contains a short description of the Stochastic Weighted Particle Method (SWPM) and its variants, discretisation of the time and space variables and modelling of the initial and boundary conditions. In the final, third part of the paper two numerical examples are presented. The first example illustrates the advantages of the SWPM in computing the tail of the distribution function while the second example deals with the spatially two-dimensional flow and shows the possibility to resolve extremely low density using SWPM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Bird. Monte Carlo simulation in an engineering context. Progr. Astro. Aero, 74:239–255,1981.

    Google Scholar 

  2. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.

    Google Scholar 

  3. A. V. Bobylev. Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules. Doklady Akad. NaukSSSR, 225 : 1041–1044,1975.

    MathSciNet  Google Scholar 

  4. J.-F. Bourgat, P. Le Tallec, B. Perthame, and Y. Qiu. Coupling Boltzmann and Euler equations without overlapping. In Domain decomposition methods in science and engineering (Como, 1992), pages 377–398. Amer. Math. Soc, Providence, RI, 1994.

    Chapter  Google Scholar 

  5. C. Cercignani. The Boltzmann Equation and Its Applications. Springer, New York, 1988.

    Book  MATH  Google Scholar 

  6. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994.

    MATH  Google Scholar 

  7. M. Günther, P. Le Tallec, J. P. Perlat, and J. Struckmeier. Numerical modeling of gas flows in the transition between rarefied and continuum regimes. In Numerical flow simulation, I (Marseille, 1997), pages 222–241. Vieweg, Braunschweig, 1998.

    Google Scholar 

  8. H. A. Hassan and D. B. Hash. A generalized hard-sphere model for Monte Carlo simulations. Phys. Fluids A, 5 : 738–744,1993.

    Article  MATH  Google Scholar 

  9. M. S. Ivanov and S. V. Rogazinskiĭ. Efficient schemes for direct statistical modeling of rarefied gas flows. Mat. Model., 1(7):130–145,1989.

    MathSciNet  MATH  Google Scholar 

  10. A. Klar. Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci., 18(8):649–670,1995.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Klar. Domain decomposition for kinetic problems with nonequilibrium states. European J. Mech. B Fluids, 15(2):203–216,1996.

    MathSciNet  MATH  Google Scholar 

  12. A. Klar. Asymptotic analysis and coupling conditions for kinetic and hydrodynamic equations. Comput. Math. Appl., 35(1–2): 127–137,1998. Simulation methods in kinetic theory.

    Google Scholar 

  13. K. Koura and H. Matsumoto. Variable soft spheres molecular model for air species. Phys. Fluids A, 4: 1083–1085,1991.

    Article  Google Scholar 

  14. K. Koura and H. Matsumoto. Variable soft spheres molecular model for inverse-power-law or Lehnhard-Jones potential. Phys. Fluids A, 3 : 2459–2465,1991.

    Article  MATH  Google Scholar 

  15. M. Krook and T.T. Wu. Exact solutions of Boltzmann equation. Phys. Fluids, 20(10), 1977.

    Google Scholar 

  16. Patrick Le Tallec and Francois Mallinger. Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys., 136(l):51–67, 1997.

    MathSciNet  Google Scholar 

  17. H. Neunzert, F. Gropengiesser, and J. Struckmeier. Computational methods for the Boltzmann equation. In Applied and industrial mathematics (Venice, 1989), pages 111–140. Kluwer Acad. Publ., Dordrecht, 1991.

    Chapter  Google Scholar 

  18. P. Quell. Stabilitätsuntersuchungen bei der numerischen Kopplung von Boltzmanngleichung und Eulergleichungen. PhD thesis, Universität des Saarlandes, 1999.

    Google Scholar 

  19. S. Rjasanow and W. Wagner. Numerical study of a Stochastic Weighted Particle Method for a model kinetic equation. J. Comp. Phys., 128(1): 351–362, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Rjasanow and W. Wagner. A stochastic weighted particle method for the Boltzmann equation. J. Comp. Phys., 124 : 243–253,1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Rjasanow and W. Wagner. Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation. Math. Comput. Modelling, 33(8–9):907–926, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Tiwari. Coupling of the Boltzmann and Euler equations with automatic domain decomposition. J. Comput. Phys., 144(2):710–726,1998.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Tiwari and A. Klar. An adaptive domain decomposition procedure for Boltzmann and Euler equations. J. Comput. Appl. Math., 90(2):223–237, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Tiwari and S. Rjasanow. Sobolev norm as a criterion of local thermal equilibrium. European J. Mech. B Fluids, 16(6):863–876, 1997.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rjasanow, S. (2004). Monte-Carlo methods for the Boltzmann equation. In: Degond, P., Pareschi, L., Russo, G. (eds) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8200-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8200-2_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6487-3

  • Online ISBN: 978-0-8176-8200-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics