Monte-Carlo methods for the Boltzmann equation

  • Sergej Rjasanow
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The first part of this chapter contains a summary of the main properties of the Boltzmann equation: some popular models of the collision kernel, moments and physical quantities, weak formulation of the Boltzmann equation, the H-theorem, the moment equations, boundary conditions and scaling transformation. The second part contains a short description of the Stochastic Weighted Particle Method (SWPM) and its variants, discretisation of the time and space variables and modelling of the initial and boundary conditions. In the final, third part of the paper two numerical examples are presented. The first example illustrates the advantages of the SWPM in computing the tail of the distribution function while the second example deals with the spatially two-dimensional flow and shows the possibility to resolve extremely low density using SWPM.


Computational Domain Boltzmann Equation Euler Equation Knudsen Number Maxwell Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Bird. Monte Carlo simulation in an engineering context. Progr. Astro. Aero, 74:239–255,1981.Google Scholar
  2. 2.
    G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.Google Scholar
  3. 3.
    A. V. Bobylev. Fourier transform method in the theory of the Boltzmann equation for Maxwell molecules. Doklady Akad. NaukSSSR, 225 : 1041–1044,1975.MathSciNetGoogle Scholar
  4. 4.
    J.-F. Bourgat, P. Le Tallec, B. Perthame, and Y. Qiu. Coupling Boltzmann and Euler equations without overlapping. In Domain decomposition methods in science and engineering (Como, 1992), pages 377–398. Amer. Math. Soc, Providence, RI, 1994.CrossRefGoogle Scholar
  5. 5.
    C. Cercignani. The Boltzmann Equation and Its Applications. Springer, New York, 1988.MATHCrossRefGoogle Scholar
  6. 6.
    C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994.MATHGoogle Scholar
  7. 7.
    M. Günther, P. Le Tallec, J. P. Perlat, and J. Struckmeier. Numerical modeling of gas flows in the transition between rarefied and continuum regimes. In Numerical flow simulation, I (Marseille, 1997), pages 222–241. Vieweg, Braunschweig, 1998.Google Scholar
  8. 8.
    H. A. Hassan and D. B. Hash. A generalized hard-sphere model for Monte Carlo simulations. Phys. Fluids A, 5 : 738–744,1993.MATHCrossRefGoogle Scholar
  9. 9.
    M. S. Ivanov and S. V. Rogazinskiĭ. Efficient schemes for direct statistical modeling of rarefied gas flows. Mat. Model., 1(7):130–145,1989.MathSciNetMATHGoogle Scholar
  10. 10.
    A. Klar. Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci., 18(8):649–670,1995.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    A. Klar. Domain decomposition for kinetic problems with nonequilibrium states. European J. Mech. B Fluids, 15(2):203–216,1996.MathSciNetMATHGoogle Scholar
  12. 12.
    A. Klar. Asymptotic analysis and coupling conditions for kinetic and hydrodynamic equations. Comput. Math. Appl., 35(1–2): 127–137,1998. Simulation methods in kinetic theory.Google Scholar
  13. 13.
    K. Koura and H. Matsumoto. Variable soft spheres molecular model for air species. Phys. Fluids A, 4: 1083–1085,1991.CrossRefGoogle Scholar
  14. 14.
    K. Koura and H. Matsumoto. Variable soft spheres molecular model for inverse-power-law or Lehnhard-Jones potential. Phys. Fluids A, 3 : 2459–2465,1991.MATHCrossRefGoogle Scholar
  15. 15.
    M. Krook and T.T. Wu. Exact solutions of Boltzmann equation. Phys. Fluids, 20(10), 1977.Google Scholar
  16. 16.
    Patrick Le Tallec and Francois Mallinger. Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys., 136(l):51–67, 1997.MathSciNetGoogle Scholar
  17. 17.
    H. Neunzert, F. Gropengiesser, and J. Struckmeier. Computational methods for the Boltzmann equation. In Applied and industrial mathematics (Venice, 1989), pages 111–140. Kluwer Acad. Publ., Dordrecht, 1991.CrossRefGoogle Scholar
  18. 18.
    P. Quell. Stabilitätsuntersuchungen bei der numerischen Kopplung von Boltzmanngleichung und Eulergleichungen. PhD thesis, Universität des Saarlandes, 1999.Google Scholar
  19. 19.
    S. Rjasanow and W. Wagner. Numerical study of a Stochastic Weighted Particle Method for a model kinetic equation. J. Comp. Phys., 128(1): 351–362, 1996.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    S. Rjasanow and W. Wagner. A stochastic weighted particle method for the Boltzmann equation. J. Comp. Phys., 124 : 243–253,1996.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    S. Rjasanow and W. Wagner. Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation. Math. Comput. Modelling, 33(8–9):907–926, 2001.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    S. Tiwari. Coupling of the Boltzmann and Euler equations with automatic domain decomposition. J. Comput. Phys., 144(2):710–726,1998.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    S. Tiwari and A. Klar. An adaptive domain decomposition procedure for Boltzmann and Euler equations. J. Comput. Appl. Math., 90(2):223–237, 1998.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    S. Tiwari and S. Rjasanow. Sobolev norm as a criterion of local thermal equilibrium. European J. Mech. B Fluids, 16(6):863–876, 1997.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Sergej Rjasanow
    • 1
  1. 1.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations