Skip to main content

Moment equations for charged particles: global existence results

  • Chapter
Modeling and Computational Methods for Kinetic Equations

Abstract

In this chapter we develop a general mathematical theory for the moment equations for charged particles obtained by applying Levermore’s method (maximum entropy principle). We will show that the main drawbacks of this method disappear when it is applied to the semiclassical Boltzmann equation for semiconductors. In this case, the phase space is given by a space variable x, as usual, and a variable k which accounts for the crystal wave number, so that ħk has the dimension of a momentum. The variable varies over a bounded subset ß of Rn, called a Brillouin region. In this model, the velocity is a given function of k, which depends on the crystal energySince ß(k) the particles described by this model carry a charge, the Boltzmann equation is coupled to a Poisson equation for the electric potential which drives the particles. For this model, we prove a local existence result, and a global existence result of smooth solutions around equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alì, G.: Global existence of smooth solutions of the N-dimensional Euler-Poisson model. SIAM J. Math. Anal., 35, 389–422 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alì, G., Bini, D., Rionero, S.: Global existence and relaxation limit for smooth solutions to the Euler-Poisson model for semiconductors. SIAM J. Math. Anal., 32, 572–587 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alì, G., Jiingel, A.: Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas. J. Diff. Eqs., 190, 663–685 (2003)

    Article  MATH  Google Scholar 

  4. Anile, A.M., Muscato, O.: Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B, 51,16728–16740 (1995)

    Article  Google Scholar 

  5. Anile, A.M., Romano, V.: Non parabolic band transport in semiconductors: closure of the moment equations. Cont. Mech. Thermodyn., 11, 307–325 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anile, A.M., Romano, V.: Hydrodynamical modeling of charge transport in semi-conductors. Meccanica, 35,219–296 (2000)

    Article  Google Scholar 

  7. Boillat, G., Ruggeri, T.: Hyperbolic principal subsystems: entropy, connexity and subcharacteristic conditions. Arch. Rational Mech. Anal., 137, 305–320 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cercignani, C.: The Boltzmann Equation And Its Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  9. Chen, G.-Q., Jerome, J., Zhang, B.: Existence and the singular relaxation limit for the inviscid hydrodynamic energy model. In: Jerome, J. (ed.) Modelling and Computation for Application in Mathematics, Science and Engineering. Clarendon Press, Oxford (1998)

    Google Scholar 

  10. Fisher, A., Marsden, D.P.: The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system. Commun. Math. Phys., 28, 1–38 (1972)

    Article  Google Scholar 

  11. Hsiao, L., Markowich, P., Wang, S.: The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors. J. Differential Equations, 192, 111–133 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeffrey, A.: Quasi-Linear Hyperbolic Systems and Waves. Pitman, S. Francisco (1976)

    Google Scholar 

  13. Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  14. Kato, T.: The Cauchy problem for quasilinear symmetric hyperbolic systems. Arch. Rational Mech. Anal., 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. SIAM Reg. Conf. Lecture No.ll, Philadelphia (1973)

    Book  MATH  Google Scholar 

  16. Levermore, CD.: Moment closure hierarchies for the Boltzmann-Poisson equation. VLSI Design, 8, 97–101 (1995)

    Google Scholar 

  17. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys., 83,331–407(1996)

    Article  MathSciNet  Google Scholar 

  18. Luo, T., Natalini, R., Xin, Z.P.: Large-time behaviour of the solutions to a hydrodynamic model for semiconductors. SIAM J. Appl. Math., 59, 810–830 (1998)

    Article  MathSciNet  Google Scholar 

  19. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  MATH  Google Scholar 

  20. Majorana, A.: Space homogeneous solutions of the Boltzmann equation describing electron-phonon interactions in semiconductors. Transp. Theory Stat. Phys., 20, 261–279(1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Majorana, A.: Conservation laws from the Boltzmann equation describing electron-phonon interactions in semiconductors. Transp. Theory Stat. Phys., 22, 849–859 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Majorana, A.: Equilibrium solutions of the non-linear Boltzmann equation for an electron gas in a semiconductor. II Nuovo Cimento, 108B, 871–877 (1993)

    Google Scholar 

  23. Markowich, P., Ringhofer, CA., Schmeiser, C: Semiconductor Equations. Springer, Wien (1990)

    Book  MATH  Google Scholar 

  24. Mascali, G., Romano, V.: Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle. Cont. Mech. Thermodyn., 14,405–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miiller, I., Ruggeri,T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  Google Scholar 

  26. Romano, V: Maximum entropy principle for electron transport in semiconductors. In: Ciancio, V, Donato, A., Oliveri, F, Rionero, S. (eds) Proceedings “WASCOM 99 ” 10-th Conference on Waves and Stability in Continuous Media (7–12th June, 1999, Italy). World Scientific, Singapore (2001)

    Google Scholar 

  27. Romano, V: Non parabolic band transport in semiconductors: closure of the production terms in the moment equations. Cont. Mech. Thermodyn., 12,31–51 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor, M.E.: Partial Differential Equations, I. Basic Theory. Springer, New York (1996)

    Google Scholar 

  29. Wu, N.: The Maximum Entropy Method. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giuseppe, A., Anile, A.M. (2004). Moment equations for charged particles: global existence results. In: Degond, P., Pareschi, L., Russo, G. (eds) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8200-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8200-2_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6487-3

  • Online ISBN: 978-0-8176-8200-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics