Advertisement

On coalescence equations and related models

  • Philippe Laurençot
  • Stéphane Mischler
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The Smoluchowski coalescence equation is a mean-field model for the growth of particles by successive mergers, and has been recently studied by deterministic and probabilis- tic methods. The present review article focuses on the deterministic approach and attempts to survey the currently available results on the questions of existence, uniqueness, mass conserva- tion, gelation, and large time behaviour, while sketching the needed mathematical tools. When fragmentation is also taken into account and a detailed balance condition is assumed, recent techniques used to investigate the trend to equilibrium are outlined.

Keywords

Gelation Time Detailed Balance Condition Coalescence Mechanism Coagulation Equation Entropy Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aizenman, M., Bak, T.A.: Convergence to equilibrium in a system of reacting polymers. Comm. Math. Phys., 65,203-230 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation, coagu- lation): a review of the mean-field theory for probabilists. Bernoulli, 5, 3–48 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Amann, H.: Coagulation-fragmentation processes.Arch. RationalMech. Anal, 151,339– 366 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ane\C, Blachere, S.,Chafai, D.,Fougeres, P.,Gentil, I.,Malrieu, F.,Roberto, C, Scheffer, G. Sur les Ine'galite's de Sobolev Logarithmiques. Panoramas et Syntheses, 10, Socidte' Mathe'matique de France, Paris (2000).Google Scholar
  5. 5.
    Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker-Doring equations for arbitrary initial data. Proc. Roy. Soc. Edinburgh Sect. A, 108,109–116 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ball, J.M., Carr, J.: The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Statist. Phys., 61,203–234 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ball, J.M., Carr, J., Penrose, O.: The Becker-Doring cluster equations : basic properties and asymptotic behaviour of solutions. Comm. Math. Phys., 104, 657–692 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Baranger, C: Collisions, coalescences et fragmentations des gouttelettes dans un spray: ecriture precise des equations relatives au modele TAB. Mdmoire de DEA, ENS de Cachan (2001).Google Scholar
  9. 9.
    Benilan, Ph., Wrzosek, D.: On an infinite system of reaction-diffusion equations. Adv. Math. Sci. Appl., 7, 349–364 (1997).MathSciNetGoogle Scholar
  10. 10.
    Bertoin, J.: Eternal solutions to Smoluchowski's coagulation equation with additive kernel and their probabilistic interpretations. Ann. Appl. Prohab., 12, 547–564 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bobylev, A.V., Illner, R.: Collision integrals for attractive potentials.J. Statist. Phys., 95, 633–649 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Burobin, A. V.: Existence and uniqueness of a solution of a Cauchy problem for the inhomogeneous three-dimensional coagulation equation. Differential Equations, 19, 1187–1197(1983).MathSciNetzbMATHGoogle Scholar
  13. 13. Canizo Ricon, J.A.: On the discrete coagulation-fragmentation equation, in preparation.Google Scholar
  14. 14.
    Carr, J.: Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case. Proc. Roy. Soc. Edinburgh Sect. A, 111, 231–244 (1992).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Carr, J., da Costa, F.P.: Instantaneous gelation in coagulation dynamics. Z Angew. Math. Phys. 43, 974–983 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Carr, J., da Costa, F.P: Asymptotic behavior of solutions to the coagulation-fragmentation equations. II. Weak fragmentation. J. Statist. Phys., 11, 89–123 (1994).CrossRefGoogle Scholar
  17. 17.
    Collet, J.F., Goudon, T, Poupaud, F, Vasseur, A.: The Becker-Doring system and its Lifshitz-Slyozov limit. SI AM J. Appl. Math., 62, 1488–1500 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Collet, J.F, Poupaud, F: Existence of solutions to coagulation-fragmentation systems with diffusion. Transport Theory Statist. Phys., 25, 503–513 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Collet, J.F, Poupaud, F: Asymptotic behaviour of solutions to the diffusive fragmentation-coagulation system. Phys. D, 114, 123–146 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    da Costa, F.P.: Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation. J. Math. Anal. Appl, 192,892–914(1995).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    da Costa, FP: On the dynamic scaling behaviour of solutions to the discrete Smolu-chowski equations. Proc. Edinburgh Math. Soc. (2), 39, 547–559 (1996)zbMATHGoogle Scholar
  22. 22.
    da Costa, F.P: Asymptotic behaviour of low density solutions to the generalized Becker-Doring equations. NoDEA Nonlinear Differential Equations Appl, 5, 23–37 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    da Costa, F.P.: A finite-dimensional dynamical model for gelation in coagulation processes. J. Nonlinear Sci., 8, 619–653 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    da Costa, F.R: Convergence to equilibna of solutions to the coagulation-fragmentation equations. In: Nonlinear evolution equations and their applications (Macau, 1998), 45–56, World Sci. Publishing, River Edge, NJ (1999).Google Scholar
  25. 25.
    Cueille, S., Sire, C: Nontrivial polydispersity exponents in aggregation models. Phys. Rev. E, 55, 5465–5478 (1997).CrossRefGoogle Scholar
  26. 26.
    Deaconu, M., Fournier, N.: Probabilistic approach of some discrete and continuous coagulation equations with diffusion. Stochastic Process. Appl, 101, 83–111 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Deaconu, M., Fournier, N., Tanre E.: A pure jump Markov process associated with Smoluchowski's coagulation equation. Ann. Probab., 30, 1763–1796 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Deaconu, M., Tanrd, E.: Smoluchowski's coagulation equation: probabilistic interpretation of solutions for constant, additive and multiplicative kernels. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29, 549–579 (2000).MathSciNetzbMATHGoogle Scholar
  29. 29.
    van Dongen, P.G.J.: On the possible occurrence of instantaneous gelation in Smolu-chowski’s coagulation equation. J. Phys. A, 20, 1889–1904 (1987).CrossRefGoogle Scholar
  30. 30.
    van Dongen, P.G.J., Ernst, M.H.: Cluster size distribution in irreversible aggregation at large times. J. Phys. A, 18, 2779–2793 (1985).MathSciNetCrossRefGoogle Scholar
  31. 31.
    van Dongen, P.G.J., Ernst, M.H.: On the occurrence of a gelation transition in Smolu-chowski's coagulation equation. J. Statist. Phys., 44, 785–792 (1986).MathSciNetCrossRefGoogle Scholar
  32. 32.
    van Dongen, P.G.J., Ernst, M.H.: Scaling solutions of Smoluchowski's coagulation equation. Statist. Phys., 50, 295–329 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Drake, R.L.: A general mathematical survey of the coagulation equation. In: Topics in Current Aerosol Research (part 2), International Reviews in Aerosol Physics and Chemistry, 203–376, Pergamon Press, Oxford (1972).Google Scholar
  34. 34.
    Dubovskii, P.B.: Mathematical Theory of Coagulation. Lecture Notes Sen 23 Seoul Nat. Univ., Seoul (1994).Google Scholar
  35. 35.
    Dubovskii, P.B., Stewart, I.W.: Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Methods Appl. Sci., 19, 571–591 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Durrett, R., Granovsky, B.L., Gueron, S.: The equilibrium behavior of reversible coagulation-fragmentation processes. J. Theoret. Probab., 12,447–474 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Eibeck, A., Wagner, W: Approximative solution of the coagulation-fragmentation equation by stochastic particle systems. Stochastic Anal. Appl, 18, 921–948 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ernst, M.H., Ziff, R.M., Hendriks, E.M.: Coagulation processes with a phase transition. J. Colloid Interface Sci., 97, 266–277 (1984).CrossRefGoogle Scholar
  39. 39.
    Escobedo, M., Laurençot, Ph., Mischler, S.: Fast reaction limit of the discrete diffusive coagulation-fragmentation equation. Comm. Partial Differential Equations, 28, 1113–1133(2003).MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40. Escobedo, M., Laurencçot, Ph., Mischler, S.: On a kinetic equation for coalescing particles. Comm. Math. Phys., to appear.Google Scholar
  41. 41.
    Escobedo, M., Laurençjot, Ph., Mischler, S., Perthame, B.: Gelation and mass conservation in coagulation-fragmentation models. J. Differential Equations, 195, 143–174 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Escobedo, M., Mischler, S., Perthame, B.: Gelation in coagulation and fragmentation models. Comm. Math. Phys., 231, 157–188 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Fasano, A., Rosso, F.: A new model for the dynamics of dispersions in a batch reactor. In: Lectures on Applied Mathematics, A.J. Burgartz, R.H.W. Hoppe, C. Zenger (eds.), Springer-Verlag, New York, 2000,123–142.Google Scholar
  44. 44. Filbet, F, Laurençot, Ph.: Numerical simulation of the Smoluchowski coagulation equation. SI AM J. Sci. Comput., to appear.Google Scholar
  45. 45. Fournier, N., Mischler, S.: A Boltzmann equation for elastic, inelastic and coalescing collisions, submitted.Google Scholar
  46. 46.
    Friedlander, S.K., Wang, C.S.: The self-preserving particle size distribution for coagulation by brownian motion. J. Colloid Interface Sci., 22,126–132 (1966).CrossRefGoogle Scholar
  47. 47.
    Galkin, V.A., Dubovskii, P.B.: Solution of the coagulation equations with unbounded kernels. Differential Equations, 22, 373–378 (1986).MathSciNetzbMATHGoogle Scholar
  48. 48.
    Golovin, A.M.: The solution of the coagulation equation for cloud droplets in a rising air current. Izv. Geophys. Sen, 5,482–487 (1963).Google Scholar
  49. 49.
    Guia§, F.: Convergence properties of a stochastic model for coagulation-fragmentation processes with diffusion. Stochastic Anal. Appl., 19, 245–278 (2001).MathSciNetCrossRefGoogle Scholar
  50. 50.
    Hendriks, E.M., Ernst, M.H., Ziff, R.M.: Coagulation equations with gelation. J. Statist. Phys. 31, 519–563 (1983).MathSciNetCrossRefGoogle Scholar
  51. 51.
    Herrero, M.A., Velázquez, J.J.L., Wrzosek, D.: Solgel transition in a coagulation-diffusion model. Phys. D, 141, 221–247 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Jabin, P.-E.: Various levels of models for aerosols. Math. Models Methods Appl Sci, 12, 903–919 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Jabin, P.-E., Niethammer, B.: On the rate of convergence to equilibrium in the Becker-Döring equations. J. Differential Equations, 191, 518–543 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Jabin, P.-E., Perthame, B.: Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid. In: Modeling in applied sciences, 111–147, Model. Simul. Sci. Eng. Technol., Birkhauser Boston, Cambridge, MA, 2000.Google Scholar
  55. 55.
    Jeon, I.: Existence of gelling solutions for coagulation-fragmentation equations. Comm. Math. Phys., 194, 541–567 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Jourdain, B.: Nonlinear processes associated with the discrete Smoluchowski coagulation fragmentation equation. Markov Process. Related Fields, 9, 103–130 (2003).MathSciNetzbMATHGoogle Scholar
  57. 57.
    Kokholm, N.J.: On Smoluchowski’s coagulation equation. J. Phys. A, 21,839–842 (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Kreer, M., Penrose, O.: Proof of dynamical scaling in Smoluchowski’s coagulation equation with constant kernel. J. Statist. Phys., 75, 389–407 (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Krivitsky, D.S.: Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function. J. Phys. A, 28, 2025–2039 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Lang, R., Nguyen Xuan Xanh: Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad-limit. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 54, 227–280(1980).Google Scholar
  61. 61.
    Laurençot, Ph.: On a class of continuous coagulation-fragmentation equations. J. Differential Equations, 167, 145–174 (2000).CrossRefGoogle Scholar
  62. 62.
    Laurençot, Ph.: The discrete coagulation equation with multiple fragmentation. Proc. Edinburgh Math. Soc. (2), 45, 67–82 (2002).zbMATHGoogle Scholar
  63. 63.
    Laurençot, Ph., Mischler, S.: Global existence for the discrete diffusive coagulation-fragmentation equation in L. Rev. Mat. Iheroamericana, 18, 731–745 (2002).zbMATHCrossRefGoogle Scholar
  64. 64.
    Laurençot, Ph., Mischler, S.: The continuous coagulation-fragmentation equations with diffusion. Arch. RationalMech. Anal, 162, 45–99 (2002).zbMATHCrossRefGoogle Scholar
  65. 65.
    Laurençot, Ph., Mischler, S.: From the discrete to the continuous coagulation-fragmentation equations. Proc. Roy. Soc. Edinburgh Sect. A, 132, 1219–1248 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Laurençot, Ph., Mischler, S.: From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations. J. Statist. Phys., 106, 957–991 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Laurençot, Ph., Mischler, S.: Convergence to equilibrium for the continuous coagulation-fragmentation equation. Bull. Sci Math., 127, 179–190 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  68. Laurençot, Ph., Mischler, S.: Une introduction aux équations de coagulation-fragmentation. Book in preparation.Google Scholar
  69. 69.
    Laurençot, Ph., Wrzosek, D.: The Becker-Döring model with diffusion. II. Long time behaviour. J. Differential Equations, 148, 268–291 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Laurençot, Ph., Wrzosek, D.: The discrete coagulation equation with colhsional breakage. J. Statist Phys., 104,193–220 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Lee, M.H.: A survey of numerical solutions to the coagulation equation. J. Phys. A, 34, 10219–10241 (2002).CrossRefGoogle Scholar
  72. 72.
    Leyvraz, F: Existence and properties of post-gel solutions for the kinetic equations of coagulation. J. Phys. A, 16, 2861–2873 (1983).MathSciNetCrossRefGoogle Scholar
  73. 73.
    Leyvraz, F, Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A, 14, 3389–3405 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Leyvraz, F, Tschudi, H.R.: Critical kinetics near gelation. J. Phys. A, 15, 1951–1964 (1982).MathSciNetCrossRefGoogle Scholar
  75. 75.
    Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids, 19, 35–50 (1961).CrossRefGoogle Scholar
  76. 76.
    Lions, P.-L.: Compactness in Boltzmann’s equation via Fourier integral operators and applications I. J. Math. Kyoto Univ., 34, 391–427 (1994).MathSciNetzbMATHGoogle Scholar
  77. 77.
    Lushnikov, A.A.: Coagulation in finite systems. J. Colloid Interface Sci., 65, 276–285 (1978).CrossRefGoogle Scholar
  78. 78.
    McGrady, E.D., Ziff, R.M.: “Shattering” transition in fragmentation. Phys. Rev. Lett., 58, 892–895 (1987).MathSciNetCrossRefGoogle Scholar
  79. 79.
    McLeod, J.B.: On an infinite set of non-linear differential equations. Quart. J. Math. Oxford Ser. (2), 13, 119–128 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    McLeod, J.B.: On an infinite set of non-linear differential equations (II). Quart. J. Math. Oxford Ser. (2), 13,193–205 (1962).MathSciNetCrossRefGoogle Scholar
  81. 81.
    McLeod, J.B.: On the scalar transport equation. Proc. London Math. Soc. (3), 14,445–458 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Marcus, A.H.: Stochastic coalescence. Technometrics, 10, 133–143 (1968).MathSciNetCrossRefGoogle Scholar
  83. 83.
    Meesters, A., Ernst, M.H.: Numerical evaluation of self-preserving spectra in Smolu-chowski’s coagulation theory. J. Colloid Interface Sci., 119, 576–587 (1987).CrossRefGoogle Scholar
  84. 84.
    Melzak, Z.A.: A scalar transport equation. Trans. Amer. Math. Soc, 85, 547–560 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Menon, G., Pego, R.L.: Dynamical scaling in Smoluchowski’s coagulation equations: uniform convergence. Comm. Pure Appl. Math., to appear.Google Scholar
  86. 86.
    Menon, G., Pego, R.L.: Approach to self-similarity in Smoluchowski’s coagulation equa-tions. Comm. Pure Appl. Math., to appear.Google Scholar
  87. 87.
    Mischler, S., Rodriguez Ricard, M.: Existence globale pour 1’équation de Smoluchowski continue non homogène et comportement asymptotique des solutions. C. R. Acad. Sci. Paris Sér. I Math., 336,407–412 (2003).zbMATHCrossRefGoogle Scholar
  88. 88.
    Mischler, S., Wennberg, B.: On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincare Anal. Non Lin éaire, 16, 467–501 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Müller, H.: Zur allgemeinen Theorie der raschen Koagulation. Kolloidchemische Beihefte, 27,223–250 (1928).CrossRefGoogle Scholar
  90. 90.
    Niethammer, B.: On the evolution of large clusters in the Becker-Döring model. J. Non-linear Science, 13,115–155 (2003).MathSciNetzbMATHGoogle Scholar
  91. 91.
    Norris, J.R.: Smoluchowski’s coagulation equation : uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab., 9,78–109 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Norris, J.R.: Cluster coagulation. Comm. Math. Phys., 209, 407–435 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Penrose, O.: The Becker-Döring equations at large times and their connection with the LSW theory of coarsening. J. Statist. Phys., 89, 305–320 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Penrose, O., Lebowitz, J.L., Marro, J., Kalos, M.H., Sur, A.: Growth of clusters in a first-order phase transition. J. Statist. Phys., 19, 243–267 (1978).CrossRefGoogle Scholar
  95. 95.
    Roquejoffre, J.M., Villedieu, Ph.: A kinetic model for droplet coalescence in dense sprays. Math. Models Methods Appl. Sci., 11, 867–882 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Slemrod, M.: Trend to equilibrium in the Becker-Döring cluster equations. Nonlinearity, 2,429–443 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    Slemrod, M.: A note on the kinetic equations of coagulation. J. Integral Equations Appl., 3,167–173 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Slemrod, M.: The Becker-Döring equations. In: Modeling in Applied Sciences, 149–171, Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Cambridge, MA (2000).Google Scholar
  99. 99.
    Smoluchowski, M.: Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr., 17, 557–599 (1916).Google Scholar
  100. 100.
    Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kol-loider Lösungen. Zeitschrift f. physik. Chemie, 92,129–168 (1917).Google Scholar
  101. 101.
    Spouge, J.L.: An existence theorem for the discrete coagulation-fragmentation equations. Math. Proc. Cambridge Philos. Soc., 96, 351–357 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Stewart, I. W.: A global existence theorem for the general coagulation-fragmentation equa-tion with unbounded kernels. Math. Methods Appl. Sci., 11, 627–648 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Stewart, I.W.: On the coagulation-fragmentation equation. Z. Angew. Math. Phys., 41, 917–924(1990).MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Stewart, I.W.: A uniqueness theorem for the coagulation-fragmentation equation. Math. Proc. Cambridge Philos. Soc, 107, 573–578 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Stewart, I.W.: Density conservation for a coagulation equation. Z Angew. Math. Phys., 42, 746–756(1991).MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Stewart, I.W., Dubovskiĭ, P.B.: Approach to equilibrium for the coagulation-fragmentation equation via a Lyapunov functional. Math. Methods Appl. Sci., 19, 171–185 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Stockmayer, W.H.: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys., 11, 45–55 (1943).CrossRefGoogle Scholar
  108. 108.
    Villedieu, Ph., Hylkema, J.: Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides. C. R. Acad. Sci. Paris Sér I Math., 325, 323–328 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Wagner, C: Theorie der Alterung von Niederschlägen durch Umlosen (Ostwald-Reifung). Z. Elektrochem., 65, 581–591 (1961).Google Scholar
  110. 110.
    Wagner, W: Stochastic, analytic and numerical aspects of coagulation processes. Math. Comp. Simul, 62, 265–275 (2003).zbMATHCrossRefGoogle Scholar
  111. 111.
    White, W.H.: A global existence theorem for Smoluchowski’s coagulation equations. Proc. Amer. Math. Soc, 80, 273–276 (1980).MathSciNetzbMATHGoogle Scholar
  112. 112.
    Wilkins, D.: A geometrical interpretation of the coagulation equation. J. Phys. A, 15, 1175–1178(1982).MathSciNetGoogle Scholar
  113. 113.
    Wrzosek, D.: Existence of solutions for the discrete coagulation-fragmentation model with diffusion. Topol. Methods Nonlinear Anal., 9, 279–296 (1997).MathSciNetzbMATHGoogle Scholar
  114. 114.
    Wrzosek, D.: Mass-conserving solutions to the discrete coagulation-fragmentation model with diffusion. Nonlinear Anal, 49, 297–314 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Ziff, R.M.: Kinetics of polymerization. J. Statist. Phys., 23, 241–263 (1980).MathSciNetCrossRefGoogle Scholar
  116. 116.
    Ziff, R.M., Stell, G.: Kinetics of polymer gelation. J. Chem. Phys.,13,3492–3499 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Philippe Laurençot
    • 1
  • Stéphane Mischler
    • 2
  1. 1.Mathématiques pour l’lndustrie et la Physique, CNRS UMR 5640Université Paul Sabatier-Toulouse 3Toulouse cedex 4France
  2. 2.Ceremade - UMR 7534Université de Paris IX - Dauphine, Place du Maréchal De Lattre de TassignyParis Cedex 16France

Personalised recommendations