Skip to main content

Quantum kinetic theory: modelling and numerics for Bose-Einstein condensation

  • Chapter

Abstract

We review some modelling and numerical aspects in quantum kinetic theory for a gas of interacting bosons and we try to explain what makes Bose-Einstein condensation in a dilute gas mathematically interesting and numerically challenging. Particular care is devoted to the development of efficient numerical schemes for the quantum Boltzmann equation that preserve the main physical features of the continuous problem, namely conservation of mass and energy, the entropy inequality and generalized Bose-Einstein distributions as steady states. These properties are essential in order to develop numerical methods that are able to capture the challenging phenomenon of bosons condensation. We also show that the resulting schemes can be evaluated with the use of fast algorithms. In order to study the evolution of the condensate wave function the Gross-Pitaevskii equation is presented together with some schemes for its efficient numerical solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aftalion, and Q. Du, Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime, Phys. Rev. A, 64, 063603, (2001).

    Article  Google Scholar 

  2. W. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates, SI AM Multiscale Modeling and Simulation, to appear (arXiv: cond-mat/0305 309).

    Google Scholar 

  3. W. Bao, D. Jaksch, An explicit unconditionally stable numerical method for solving damped nonlinear Schrodinger equations with a focusing nonlinearity, SIAM J. Numer. Anal., 41,1406–1426,(2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Bao, Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comp., to appear (arXiv: cond-mat/0303241).

    Google Scholar 

  5. W. Bao, D. Jaksch, P. Markowich, Numerical solution of the Gross-Pitaevskii Equation for Bose-Einstein condensation, J. Comput. Phys., 187, 318–342, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Bao, D. Jaksch, P. Markowich, Three Dimensional Simulation of Jet Formation in Collapsing Condensates, J. Phys. B: At. Mol. Opt. Phys., 37, 329–343, (2004).

    Article  Google Scholar 

  7. W. Bao, S. Jin, P.A. Markowich, On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime, J. Comput. Phys., 175,487–524, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. W. Bao, S. Jin, P.A. Markowich, Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-clasical regimes, SIAM J. Sci. Comp., 25, 27–64, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Bao, W. Tang, Ground state solution of trapped interacting Bose-Einstein condensate by directly minimizing the energy functional, J. Comput. Phys., 187, 230–254, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Benedetto, F. Castella, R. Esposito, M. Pulvirenti, Some Considerations on the deriva-tion of the nonlinear Quantum Boltzmann Equation. Mathematical Physics Archive, Uni-versity of Texas, 03–19, (2003).

    Google Scholar 

  11. S.N. Bose, Plancks Gesetz and Lichtquantenhypothese,Z Phys., 26, 178–181, (1924).

    Article  MATH  Google Scholar 

  12. M.L. Chiofalo, S. Succi, M.P. Tosi, Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm, Phys. Rev. E, 62,7438–7444, (2000).

    Article  Google Scholar 

  13. C. Buet, S. Cordier, Numerical method for the Compton scattering operator, in: Lecture Notes on the discretization of the Boltzmann equation, ed. N. Bellomo, World Scientific, (2002).

    Google Scholar 

  14. C. Buet, S. Cordier, P. Degond, M. Lemou, Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck equation, J. Comp. Phys., 133,310–322, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Chapman, T. G. C78owling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, 1970. Third edition.

    Google Scholar 

  16. E. A. Cornell, J. R. Ensher, C. E. Wieman, Experiments in dilute atomic Bose-Einstein condensation in: Bose-Einstein Condensation in Atomic Gases, Proceedings of the Inter-national School of Physics Enrico Fermi Course CXL, M. Inguscio, S. Stringari and C. E. Wieman, Eds., Italian Physical Society, 1999), pp. 15–66 (cond-mat/9903109).

    Google Scholar 

  17. E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, C. E. Wieman, Dynamics of collapsing and exploding Bose-Einstein condensates, Nature, 412,295–299, 2001.

    Article  Google Scholar 

  18. A. Einstein, Quantentheorie des einatomingen idealen gases, Stiz. Presussische Akademie der Wissenshaften Phys-math. Klasse, Sitzungsberichte, 23,1–14, (1925).

    Google Scholar 

  19. A. Einstein, Zur quantentheorie des idealen gases, Stiz. Presussische Akademie der Wis-senshaften Phys-math. Klasse, Sitzungsberichte, 23,18–25, (1925).

    Google Scholar 

  20. L. Erdös, M. Salmhofer, H. Yau, On the quantum Boltzmann equation, preprint 2003.

    Google Scholar 

  21. M. Escobedo, S. Mischler, Equation de Boltzmann quantique homogene: existence et comportement asymptotique, C R. Acad. Sci. Paris 329 Serie I, 593–598 (1999).

    Google Scholar 

  22. M. Escobedo, S. Mischler, M. A. Valle, Homogeneous Boltzmann equation in quantum relativistic kinetic theory, Electronic Journal of Differential Equations, Monograph 04, 2003, 85 pages, (http://ejde.math.swt.edu or http://ejde.math.unt.edu or http://ejde.math.unt.edu).

    MathSciNet  Google Scholar 

  23. M. Escobedo, S. Mischler, On a quantum Boltzmann equation for a gas of photons, J. Math. PuresAppl, 9:80, 471–515, (2001).

    Article  MathSciNet  Google Scholar 

  24. C.W. Gardiner, D. Jaksch, P. Zoller, Quantum Kinetic Theory II: Simulation of the Quantum Boltzmann Master Equation, Phys. Rev. A, 56, 575, (1997).

    Article  Google Scholar 

  25. C.W. Gardiner, P. Zoller, Quantum Kinetic Theory I: A Quantum Kinetic Master Equation for Condensation of a weakly interacting Bose gas without a trapping potential, Phys. Rev. A, 55, 2902, (1997).

    Article  Google Scholar 

  26. C.W. Gardiner, P. Zoller, Quantum Kinetic Theory III: Quantum kinetic master equation for strongly condensed trapped systems, Phys. Rev. A, 58, 536, (1998).

    Article  Google Scholar 

  27. V.L. Ginzburg, L.P. Pitaevskii, On the theory of superfluidity, Zh. Eksp. Teor.Fiz., 34,1240 (1958) [Sov. Phys. JETP 7, 858 (1958)].

    MathSciNet  Google Scholar 

  28. E. P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys., 4, 195 (1963).

    Article  Google Scholar 

  29. E.P. Gross, Structure of a quantized vortex in boson systems, Nuovo. Cimento., 20, 454, (1961).

    Article  MATH  Google Scholar 

  30. D. Jaksch, P. Markowich, L. Pareschi, M. Wenin, P. Zoller, Increasing phase-space density by varying the trap potential, work in progress.

    Google Scholar 

  31. B. Jackson, E. Zaremba, Dynamical simulations of trapped Bose gases at finite tempera-tures, Laser Phys., 12, 93–105, (2002).

    Google Scholar 

  32. W. Ketterle, D. S. Durfee, D.M. Stamper-Kurn, Making, probing and understanding Bose- Einstein condensates, in: Bose-Einstein condensation in atomic gases, Proceedings of the International School of Physics Enrico Fermi, Course CXL, M. Inguscio, S. Stringari, and CE. Wieman, eds., (IOS Press, Amsterdam, 1999), pp. 67–176 (cond-mat/9904034).

    Google Scholar 

  33. L. Landau, E. Lifschitz, Quantum Mechanics: Non-relativistic Theory, Pergamon Press, New York, (1977).

    Google Scholar 

  34. P. Leboeuf, N. Pavloff, Phys. Rev. A 64, 033602 (2001); V. Dunjko, V. Lorent, and M. 01- shanii, Phys. Rev. Lett. 86, 5413 (2001).

    Google Scholar 

  35. M.Lemou, Multipole expansions for the Fokker-Planck-Landau operator, Numerische Mathematik, 78, 597–618, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  36. E.H. Lieb, R. Seiringer, J. Yngvason, Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional, Phys. Rev. A, 61, 3602, (2000).

    Article  Google Scholar 

  37. X. Lu, On spatially homogeneous solutions of a modified Boltzmann equation for Fermi- Dirac particles, J. Statist. Phys., 105, 353–388, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  38. X. Lu, A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior, J. Statist. Phys., 98, 1335–1394, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Markowich, L.Pareschi, Fast, conservative and entropic numerical methods for the boson Boltzmann equation, preprint 2002.

    Google Scholar 

  40. L. Pareschi, Computational methods and fast algorithms for Boltzmann equations. Lecture Notes on the discretization of the Boltzmann equation, ed. N. Bellomo, World Scientific, (2002).

    Google Scholar 

  41. L. Pareschi, G. Russo, G. Toscani, Fast spectral methods for the Fokker-Planck-Landau collision operator, J. Comp. Phys, 165, 1–21, (2000).

    Article  MathSciNet  Google Scholar 

  42. L. Pareschi, G.Toscani, C Villani, Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit, Numerische Mathematik, (to appear).

    Google Scholar 

  43. L.P. Pitaevskii, Zh. Eksp. Teor. Fiz., 40, 646, (1961) (Sov. Phys. JETP, 13, 451, (1961)).

    Google Scholar 

  44. D.V. Semikoz, I.I. Tkachev, Kinetics of Bose condensation, Physical Review Letters, 74, 3093–3097, (1995).

    Article  Google Scholar 

  45. D.V. Semikoz, I.I. Tkachev, Condensation of bosons in the kinetic regime, Physical Review D, 55,489–502, (1997).

    Article  Google Scholar 

  46. D.M. Stamper-Kurn, H.J. Miesner, A.R Cdikkatur, S. Inouye, J. Stenger, W Ketterle, Phys. Rev, Lett., 81, p. 2194, (1988).

    Article  Google Scholar 

  47. G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5, (1968) pp. 506.

    Article  MathSciNet  MATH  Google Scholar 

  48. J.T.M. Walraven, Quantum dyanmics of simple systems, edited by G.L.Oppo, S.L.Burnett, E.Riis and M.Wilkinson, Bristol 1996. (SUSSP Proceedings, vol. 44).

    Google Scholar 

  49. H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150, 262–268, (1990).

    Article  MathSciNet  Google Scholar 

  50. E. Zaremba, T. Nikuni, A. Griffin, J. Low Temp. Phys., 116, p. 277, (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bao, W., Pareschi, L., Markowich, P.A. (2004). Quantum kinetic theory: modelling and numerics for Bose-Einstein condensation. In: Degond, P., Pareschi, L., Russo, G. (eds) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8200-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8200-2_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6487-3

  • Online ISBN: 978-0-8176-8200-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics