Advertisement

Macroscopic limits of the Boltzmann equation: a review

  • Pierre Degond
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This document is concerned with the modeling of particle systems via kinetic equations. First, the hierarchy of available models for particle systems is reviewed, from particle dynamics to fluid models through kinetic equations. In particular the derivation of the gas dynamics Boltzmann equation is recalled and a few companion models are discussed. Then, the basic properties of kinetic models and particularly of the Boltzmann collision operator are reviewed. The core of this work is the derivation of macroscopic models (as e.g., the Euler or Navier-Stokes equations) from the Boltzmann equation by means of the Hilbert and ChapmanEnskog methods. This matter is first discussed in the context of the BGK equation, which is a simpler model than the full Boltzmann equation. The extension to the Boltzmann equation is summarized at the end of this discussion. Finally, a certain number of current research directions are reviewed. Our goal is to give a synthetic description of this subject, so as to allow the reader to acquire a rapid knowledge of the basic aspects of kinetic theory. The reader is referred to the bibliography for more details on the various items which are reviewed here.

Keywords

Boltzmann Equation Euler Equation Collision Operator Hydrodynamic Limit Linear Boltzmann Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexandre, R., Villani, C: On the Landau approximation in plasma physics. Ann. I.H.P. An. non linéaire, to appearGoogle Scholar
  2. 2.
    Anile, A.M., Muscato, O.: Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B, 51 16728 (1995)CrossRefGoogle Scholar
  3. 3.
    Anile, A.M., Muscato, O.: Extended thermodynamics tested beyond the linear regime: the case of electron transport in silicon semiconductors. Cont. Mech. and Thermodynamics, 8,1 (1996)CrossRefGoogle Scholar
  4. 4.
    Arkeryd, L.: On the Boltzmann equation, part I: existence. Arch. Rational Mech. Anal., 45,1–16 (1972)MathSciNetMATHGoogle Scholar
  5. 5.
    Arkeryd, L.: On the Boltzmann equation, part II: the full initial value problem. Arch. Rational Mech. Anal., 45,17–34 (1972)MathSciNetMATHGoogle Scholar
  6. 6.
    Arsen’ev, A.A.: Global existence of a weak solution of Vlasov’s system of equations. USSR Comput. Math, and Math. Phys., 15,131–143 (1975)CrossRefGoogle Scholar
  7. 7.
    Arsen’ev, A.A., Buryak, O.E.: On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. USSR Sbornik, 69,465–478(1991)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Arsen’ev, A.A., Peskov, N., V.: On the existence of a generalized solution of Landau’s equation. USSR Comput Maths math. Phys., 17, 241–246 (1978)MATHCrossRefGoogle Scholar
  9. 9.
    Bardos, C, Caflish, R., Nicolaenko, B.: Commun. Math. Phys., 22,208 (1982)Google Scholar
  10. 10.
    Bardos, C, Degond, P.: Global existence for the Vlasoc-Poisson equation in 3 space variables with small initial data. Ann. Inst. HenriPoincaré,Analysenon-linéaire, 2,101–118(1985)MathSciNetMATHGoogle Scholar
  11. 11.
    Bardos, C, Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations I. formal derivations. J. Stat. Phys., 63, 323–344 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bardos, C, Golse, F, Levermore, CD.: Fluid dynamic limits of kinetic equations II. convergence proofs for the Boltzmann equation. Commun. on Pure and Appl. Math., 46, 667–754 (1993)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Bardos, C, Golse, F, Levermore, CD.: The acoustic limit for the Boltzmann equation. Arch. Rational Mech. Anal., 153, 177–204 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bardos, C, Ukai, S.: The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math. Models and Meth. in the Appl. Sci., 1 235–257 (1991)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Batt, J., Global symmetric solutions of the initial value problem of stellar dynamic. J Diff. Eq., 25, 342–364 (1977)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Batt, J., Faltenbacher, W., Horst, E.: Stationary spherically symmetric models in stellar dynamics. Arch. Rational Mech. Anal, 93 159–183 (1986)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Bellomo, N., Lachowicz, M., Polewczak, J.,Toscani, G.: Mathematical topics in nonlinear kinetic theory, II The Enskog equation. World Scientific, London (1991)MATHGoogle Scholar
  18. 18.
    Ben Abdallah, N., Weak solutions of the initial-boundary value problem for the VlasovPoisson system. Math. Meth. in the Appl. Sci., 17,451–476 (1994)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Berthelin, F, Bouchut, F: Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics. Asymptotic analysis, 31, 153–176 (2002)MathSciNetMATHGoogle Scholar
  20. 20.
    Boldrighini, C, Bunimovitch, C, Sinai, Ya.G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys., 32,477–501 (1983)MATHCrossRefGoogle Scholar
  21. 21.
    Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekiilen. Sitzungsberichte Akad. Wiss., Vienna, part II, 66,275–370 (1872)MATHGoogle Scholar
  22. 22.
    Borgnakke, C, Larsen, RS., Statistical collision model for Monte-Carlo simulation of polyatomic gas mixtures. J. Comput. Phys., 18, 405 (1975)CrossRefGoogle Scholar
  23. 23.
    Bouchut, R: Global weak solution of the Vlasov-Poisson system for small electrons mass. Commun Part. Diff. Eqns., 16,1337–1365 (1991)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Bouchut, R: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys., 95,113–170 (1999)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Bouchut, R, Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam., 14,47–61 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Bourgain, J., Golse, R, Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas, Commun. Math. Phys., 190,491–508 (1998)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Bourgat, J.R, Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann’s Theorem. Eur J. of Mechanics, B Fluids, 13,237–254 (1994)MATHGoogle Scholar
  28. 28.
    Caflisch, R.: The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math., 33, 651–666 (1980)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Caflisch, R.: The Boltzmann equation with a soft potential, I. Linear, spatially-homogeneous. Commun. Math. Phys., 74, 71–95 (1980)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Caflisch, R.: The Boltzmann equation with a soft potential, II. Nonlinear, spatiallyperiodic. Commun. Math. Phys., 74,97–109 (1980)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Carleman, T.: Sur la theorie de 1’equation integro-differentielle de Boltzmann. Acta Math-ematics 60,91–146 (1933)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Carleman, T: Problèmes mathématiques de la theorie cinétique des gaz. Almqvist & Wiksell, Uppsala (1957)Google Scholar
  33. 33.
    Castella, R: From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework. J. Stat. Phys., 104, 387–447 (2001)MathSciNetMATHCrossRefGoogle Scholar
  34. Castella, R, Degond, P.: Convergence of the Von-Neumann equation towards the quantum Boltzmann equation in a deterministic framework. C. R. Acad. Sci. Paris Serl, 329,231–236(1999)MathSciNetGoogle Scholar
  35. 35.
    Cercignani, C, Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Springer, New-York (1994)MATHGoogle Scholar
  36. 36.
    Chapman, S.: The kinetic theory of simple and composite gases: viscosity, thermal conduction and diffusion, Proc. Roy. Soc. (London) A93,1–20 (1916/17)MATHGoogle Scholar
  37. 37.
    Chapman, S., Cowling, T.G.: The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge (1952)Google Scholar
  38. 38.
    Chen, F.F.: Introduction to plasma physics. Plenum, New-York (1977)Google Scholar
  39. 39.
    Chen, G.Q., Levermore, CD., Liu, T.P.: Hyperbolic Conservation Laws with Stiff Relaxation Terms and Entropy. Commun. Pure Appl. Math., 47 787–830 (1994)MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Coron, R, Golse, R, Sulem, C: A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math., 41,409–435 (1988)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Degond, P.: Mathematical modelling of microelectronics semiconductor devices. In AMS/IP Studies in Advanced Mathematics, Vol 15, AMS Society and International Press (2000)Google Scholar
  42. 42.
    Degond, P., Lemou, M.: Dispersion relations of the linearized Fokker-Planck equation, Arch. Rational Mech. Anal., 138 137–167 (1997)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers, SIAM J. Appl. Math., 62 1501–1519 (2002)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Degond, P., Lucquin-Desreux, B.: The Fokker-Planck Asymptotics of the Boltzmann Collision Operator in the Coulomb Case. Math. Meth. Models in the Appl. Sci., 2 167–182(1992)Google Scholar
  45. 45.
    Degond, P., Lucquin-Desreux, B.: Transport coefficients of plasmas and disparate mass binary gases. Transp. Theory Stat. Phys, 25 595–633 (1996)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Delcroix, J.L., Bers, A.: Physique des plasmas 1 & 2. Interéditions, Paris (1994)Google Scholar
  47. 47.
    De Masi, A., Esposito, R., Lebowitz, J. L.: incompressible Navier-Stokes and Euler limit of the Boltzmann equation. Commun. Pure Appl. Math., 42 1189–1214 (1989)MATHCrossRefGoogle Scholar
  48. 48.
    Deshpande, S.M., A second order accurate kinetic-theory-based method for inviscid compressible flows, Tech. Report 2583, NASA, Langley, VA (1986)Google Scholar
  49. 49.
    Desvillettes, L.: On Asy mptotics of the Boltzmann Equation when the Collisions Become Grazing. Transp. Th. Stat. Phvs., 21, 259–276 (1992)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Desvillettes, L.: Some Applications of the Method of Moments for the Homogeneous Boltzmann and Kac Equations. Arch. Rational Mech. Anal., 123, 387–404 (1993)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Desvillettes, L.: Regularization properties of the 2 -dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules. Transp. Theory Stat. Phys., 26, 341–357 (1997)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Math. Models Methods Appl. Sci., 9,1123–1145 (1999)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Desvillettes, L., Villani, C: On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Commun. Part. Diff. Eqns., 25, 179–259 (2000)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Desvillettes, L., Villani, C: On the spatially homogeneous Landau equation for hard potentials. Part II: H-Theorem and applications. Commun. Part. Diff. Eqns. 25,261–298 (2000)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    DiPerna, R., Lions, PL.: On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys, 120 1–23 (1988)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    DiPerna, R., Lions, PL.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Annals of Mathematics (1989)Google Scholar
  57. 57.
    DiPerna, R., Lions, PL.: Global solutions of the Vlasov-Maxwell systems. Commun. Pure Appl. Math., 42 729–757 (1989)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Dolbeault, J., Kinetic models and quantum effects: a modified Boltzmann equation for Fermi-Dirac particles. Arch. Rational Mech. Anal., 127, 101–131 (1994)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Dubroca, B., Feugeas, J.L.: Etude théorique et numérique d’une hiérarchie de modèles aux moments pour Ie transfert radiatif. C. R. Acad. Sci. Paris Ser 1,329,915–920 (1999)MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures et Appl., 54, 125–156 (1975)MathSciNetGoogle Scholar
  61. 61.
    Ellis, R.S., Pinsky, M.A.: The projection of the Navier-Stokes equations upon the Euler equations. J. Math. Pures et Appl, 54, 157–182 (1975)MathSciNetGoogle Scholar
  62. 62.
    Enskog, D.: Kinetische Theone der Vorgänge in mässig verdunntent Gasen, 1, in Allgemeiner Teil, Almqvist & Wiksell, Uppsala (1917)Google Scholar
  63. 63.
    Erdös, L., Yau, H.T.: Linear Boltzmann equation as the weak coupling limit of a random Schrodinger equation. Commun. Pure Appl. Math., 53, 667–735 (2000)MATHCrossRefGoogle Scholar
  64. 64.
    Escobedo, M., Herrero, M.A., Velazquez, J.J.L.: A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma. Trans. Amer. Math. Soc, 350, 3837–3901 (1998)MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Galavotti, G., Rigourous theory of the Boltzmann equation in the Lorentz gas. Nota interna 358, Istituto di Fisica, Universita di Roma (1973)Google Scholar
  66. 66.
    Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)MATHCrossRefGoogle Scholar
  67. 67.
    Glassey, R.T., Schaeffer, J.: The relativistic Vlasov Maxwell system in two space dimensions: part 1. Arch. Rational Mech. Anal., 141, 331–354 (1998)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Glassey, R.T., Schaeffer, J.: The relativistic Vlasov Maxwell system in two space dimensions: part 2. Arch. Rational Mech. Anal., 141, 355–374 (1998)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Glassey, R.T., Strauss, W.A.: Large velocities in the relativistic Vlasov-Maxwell equations. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 36, 615–627 (1989)MathSciNetMATHGoogle Scholar
  70. 70.
    Golse, F., Poupaud, F: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asymptotic Analysis 6, 135–160 (1992)MathSciNetMATHGoogle Scholar
  71. 71.
    Golse, F, Saint-Raymond, L.: The Navier-Stokes limit for the Boltzmann equation: convergence proof, manuscript, submittedGoogle Scholar
  72. 72.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math., 2,331–407 (1949)MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Grad, H.: Principles of the kinetic theory of gases. In: Flügge, S. (ed) Handbuch der Physik, vol XII. Springer, Berlin Heidelberg New York (1958)Google Scholar
  74. 74.
    Grad, H., Asymptotic theory of the Boltzmann equation, II. In Proceeding ot the Inird International Conference on Rarefied Gases, Paris (1962)Google Scholar
  75. 75.
    Grad, H.: Asymptotic theory of the Boltzmann equation. The physics of Fluids, 6, 147–181 (1963)MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Grad, H.: Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equation, In Proceedings of the American Mathematical Society Symposia on Applied Mathematics 17, 154–183 (1965)MathSciNetGoogle Scholar
  77. 77.
    Greengard, C., Raviart, P. A.: A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode. Commun. Pure Appl. Math., 43,473–507 (1990)MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Hamdache, K.: Initial boundary value problems for Boltzmann equation. Global existence of weak solutions. Arch. Rational Mech. Anal, 119, 309–353 (1992)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Hilbert, D.: Begriindung der kinetischen Gastheorie. Mathematische Annalen 72, 562–577(1916/17)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Hill, T.L.: An introduction to statistical thermodynamics. Dover, Mineola (1986)Google Scholar
  81. 81.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, 1. General theory. Math. Meth. in the Appl. Sci., 3, 229–248 (1981)MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, 2. Special cases. Math. Meth. in the Appl. Sci., 4, 19–32 (1982)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Meth. in the Appl. Sci., 6, 262–270 (1984)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Illner, R., Neunzert, H.: An existence theorem for the unmodified Vlasov Equation. Math. Meth. in the Appl. Sci., 1, 530–554 (1979)MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Illner, R., Shinbrot, M.: The Boltzmann equation: global existence for a rare gas in an infinite vacuum. Commun. Math. Phys., 95, 217–226 (1984)MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Jin, S.: Efficient Asymptotic-Preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comp., 21, 441–454 (1999)MATHCrossRefGoogle Scholar
  87. 87.
    Jin, S., Slemrod, M.: Regularization of the Burnett Equations via Relaxation. J. Stat. Phys. 103, 1009–1033 (2001)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Jin, S., Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math., 48 235–276 (1995)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Junk, M.: Domain of Definition of Definition of Levermore’s Five-Moment System. J. Stat. Phys., 93, 1143–1167(1998)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Kaniel, S., Shinbrot, M.: The Boltzmann equation, I Uniqueness and local existence. Commun. Math. Phys., 58, 65–84 (1978)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1976)MATHCrossRefGoogle Scholar
  92. 92.
    Kawashima, S., Matsumura, A., Nishida, T.: On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation. Commun. Math. Phys., 70,97–124(1979)MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Klar. A.: An Asymptotic Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit. SIAM J. Num. Anal., 35,1073–1094 (1998)MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Klar, A., Neunzert, H., Struckmeier, J.: Transition from Kinetic Theory to Macroscopic Fluid Equations: A Problem for Domain Decomposition and a Source for New Algorithms. Transp. Theory Stat. Phys., 29,93–106 (2000)MATHCrossRefGoogle Scholar
  95. 95.
    Krall, N.A., Trivelpiece, A.W.: Principles of plasma physics. McGraw Hill, New-York, 1964.Google Scholar
  96. 96.
    Lanford III, O.: The evolution of large classical systems. In: Moser, J. (ed) Dynamical systems, theory and applications. LNP 35,1–111, Springer, Berlin (1975)CrossRefGoogle Scholar
  97. 97.
    Larsen, E. W.: Neutron transport and diffusion in inhomogeneous media I. J. Math. Phys., 16,1421–1427(1975)CrossRefGoogle Scholar
  98. 98.
    Larsen, E. W.: Neutron transport and diffusion in inhomogeneous media II. Nuclear Sci. Eng., 60, 357–368 (1976)Google Scholar
  99. 99.
    Larsen, E. W., Keller, J. B.: Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys., 15 75–81 (1974)MathSciNetCrossRefGoogle Scholar
  100. 100.
    Lemou, M.: Linearized quantum and relativistic Fokker-Planck-Landau equations. Math. Meth. Appl. Sci., to appearGoogle Scholar
  101. 101.
    Le Tallec, P. Mallinger, E: Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys., 136, 51–67 (1997)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Levermore, CD.: Moment Closure Hierarchies for Kinetic Theories. J. Stat. Phys., 83 1021–1065 (1996)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Lions, PL.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I. J. Math. Kyoto Univ., 34, 391–427 (1994)MathSciNetMATHGoogle Scholar
  104. 104.
    Lions, PL.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. II. J. Math. Kyoto Univ., 34,429–462 (1994)Google Scholar
  105. 105.
    Lions, PL.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ., 34, 539–584 (1994)MathSciNetMATHGoogle Scholar
  106. 106.
    Lions, PL.: On Boltzmann and Landau equations. Phil. Trans. Roy. Soc. London, 346, 191–204(1994)MATHCrossRefGoogle Scholar
  107. 107.
    Lions, PL., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math., 105,415–430 (1991)MathSciNetMATHCrossRefGoogle Scholar
  108. 108.
    Lions, P-L. Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. of the AMS, 7, 169–191 (1994)MathSciNetMATHGoogle Scholar
  109. 109.
    Lions, P-L. Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys., 163,415–431 (1994)MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Maslova, N.: Kramers problem in the kinetic theory of gases. USSR Comput. Math. Math. Phys., 22, 208–219 (1982)MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Maxwell, J.C.: On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157,49–88 (1867)CrossRefGoogle Scholar
  112. 112.
    Mieussens, L.: Discrete velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys., 162,429–466 (2001)MathSciNetCrossRefGoogle Scholar
  113. 113.
    Mischler, S., On a Quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl., 80, 471–515 (2001)MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Mueller, I., Ruggeri, T: Rational extended thermodynamics. Springer, New-York (1998)MATHCrossRefGoogle Scholar
  115. 115.
    Nicolaeko, B.: Shock wave solution of the Boltzmann equation as a nonlinear bifurcation problem for the essential spectrum. In: Pichon, G. (ed) Théories Cinétiques Classiques et Relativistes. CNRS, Paris (1975)Google Scholar
  116. 116.
    Nishida, T: Fluid dynamical limit of the nonlinear Boltzmann equation at the level of the compressible Euler equations. Commun. Math. Phys., 61, 119–148 (1978)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzman equation. Publ. R.I.M.S. Kyoto Univ., 12, 229–239 (1976)MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: chemotaxis equations, SIAM J. Appl. Math., 62,1222–1250 (2002)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Diff. Eq., 82 191–205 (1989)MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy principle. SIAM J. Numer. Anal., 27,1405–1421 (1990)MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    Perthame, B.: Time decay, propagation of low moments and dispersive effects for kinetic equations. Commun. Part. Diff. Eqns., 21, 659–686 (1996)MathSciNetMATHCrossRefGoogle Scholar
  122. 122.
    Perthame, B., Pulvirenti, M.: Weighted L bounds and uniqueness for the Boltzmann BGK model. Arch. Rational Mech. Anal., 125, 289–295 (1993)MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eqns., 95 281–303 (1992)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Poupaud, R: On a system of non linear Boltzmann equation of semiconductor physics. SIAM J. Appl. Math., 50 1593–1606 (1990)MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Poupaud, R: Diffusion approximation of the linear semiconductor equation: analysis of boundary layers. Asymptotic Analysis 4, 293–317 (1991)MathSciNetMATHGoogle Scholar
  126. 126.
    Poupaud, P.: Boundary value problems for the stationary Vlasov-Maxwell system. Porum MAth., 4 499–527 (1992)MathSciNetMATHGoogle Scholar
  127. 127.
    Prendergast, K.H., Xu, K., Numerical hydrodynamics from gas-kinetic theory. J. Comput. Phys., 109, 53–66 (1993)MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Pullin, D., I., Direct simulation methods for compressible inviscid ideal-gas flow. J. Comput. Phys., 34, 231–244 (1980)MATHCrossRefGoogle Scholar
  129. 129.
    Reed, M., Simon, B.: Methods of modern mathematical physics, vol IV: analysis of operators. Academic Press, San Diego (1978)Google Scholar
  130. 130.
    Reggiani, L.: Hot-electron transport in semiconductors. Springer, Berlin (1985)CrossRefGoogle Scholar
  131. 131.
    Rezakhanlou, P.: A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit. Commun. Math. Phys., 232 327–375 (2003)MathSciNetMATHCrossRefGoogle Scholar
  132. 132.
    Schaeffer, J.: Global existence of smooth solution to the Vlasov-Poisson system in three dimensions. Commun. Part. Diff. Equs., 16, 1313–1335 (1991)MathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhauser, Basel (2002)MATHCrossRefGoogle Scholar
  134. 134.
    Spohn, H., Large scale dynamics of interacting particles, Springer, Berlin (1991)MATHCrossRefGoogle Scholar
  135. 135.
    Takata, S., Aoki, K.: Two-surface problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory. Phys. Fluids, 11,2743–2756(1999)MATHCrossRefGoogle Scholar
  136. 136.
    Ukai, S.: On the existence of global solutions of mixed problem for the nonlinear Boltz-mann equation. Proc. Japan Acad., 50 179–184 (1974)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Ukai, S., Asano, K.: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. R.I.M.S. Kyoto Univ., 18 477–519 (1982)MathSciNetMATHCrossRefGoogle Scholar
  138. 138.
    Ukai, S., Okabe, T: On classical solution in the large in time of two-dimensional Vlasov’s equation. Osaka J. Math., 15, 245–261 (1978)MathSciNetMATHGoogle Scholar
  139. 139.
    Villani, C: On the Landau equation: weak stability, global existence. Adv. Diff. Eq., 1 793–816(1996)MathSciNetMATHGoogle Scholar
  140. 140.
    Wennberg, B.: Stability and exponential convergence for the Boltzmann equation. Arch. Rational Mech. Anal., 130, 103–144 (1995)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Pierre Degond
    • 1
  1. 1.MIP, UMR 5640 (CNRS-UPS-INSA)Université Paul SabatierToulouse cedexFrance

Personalised recommendations