Skip to main content

Abstract

This document is concerned with the modeling of particle systems via kinetic equations. First, the hierarchy of available models for particle systems is reviewed, from particle dynamics to fluid models through kinetic equations. In particular the derivation of the gas dynamics Boltzmann equation is recalled and a few companion models are discussed. Then, the basic properties of kinetic models and particularly of the Boltzmann collision operator are reviewed. The core of this work is the derivation of macroscopic models (as e.g., the Euler or Navier-Stokes equations) from the Boltzmann equation by means of the Hilbert and ChapmanEnskog methods. This matter is first discussed in the context of the BGK equation, which is a simpler model than the full Boltzmann equation. The extension to the Boltzmann equation is summarized at the end of this discussion. Finally, a certain number of current research directions are reviewed. Our goal is to give a synthetic description of this subject, so as to allow the reader to acquire a rapid knowledge of the basic aspects of kinetic theory. The reader is referred to the bibliography for more details on the various items which are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre, R., Villani, C: On the Landau approximation in plasma physics. Ann. I.H.P. An. non linéaire, to appear

    Google Scholar 

  2. Anile, A.M., Muscato, O.: Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B, 51 16728 (1995)

    Article  Google Scholar 

  3. Anile, A.M., Muscato, O.: Extended thermodynamics tested beyond the linear regime: the case of electron transport in silicon semiconductors. Cont. Mech. and Thermodynamics, 8,1 (1996)

    Article  Google Scholar 

  4. Arkeryd, L.: On the Boltzmann equation, part I: existence. Arch. Rational Mech. Anal., 45,1–16 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Arkeryd, L.: On the Boltzmann equation, part II: the full initial value problem. Arch. Rational Mech. Anal., 45,17–34 (1972)

    MathSciNet  MATH  Google Scholar 

  6. Arsen’ev, A.A.: Global existence of a weak solution of Vlasov’s system of equations. USSR Comput. Math, and Math. Phys., 15,131–143 (1975)

    Article  Google Scholar 

  7. Arsen’ev, A.A., Buryak, O.E.: On the connection between a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation. Math. USSR Sbornik, 69,465–478(1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arsen’ev, A.A., Peskov, N., V.: On the existence of a generalized solution of Landau’s equation. USSR Comput Maths math. Phys., 17, 241–246 (1978)

    Article  MATH  Google Scholar 

  9. Bardos, C, Caflish, R., Nicolaenko, B.: Commun. Math. Phys., 22,208 (1982)

    Google Scholar 

  10. Bardos, C, Degond, P.: Global existence for the Vlasoc-Poisson equation in 3 space variables with small initial data. Ann. Inst. HenriPoincaré,Analysenon-linéaire, 2,101–118(1985)

    MathSciNet  MATH  Google Scholar 

  11. Bardos, C, Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations I. formal derivations. J. Stat. Phys., 63, 323–344 (1991)

    Article  MathSciNet  Google Scholar 

  12. Bardos, C, Golse, F, Levermore, CD.: Fluid dynamic limits of kinetic equations II. convergence proofs for the Boltzmann equation. Commun. on Pure and Appl. Math., 46, 667–754 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bardos, C, Golse, F, Levermore, CD.: The acoustic limit for the Boltzmann equation. Arch. Rational Mech. Anal., 153, 177–204 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bardos, C, Ukai, S.: The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math. Models and Meth. in the Appl. Sci., 1 235–257 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Batt, J., Global symmetric solutions of the initial value problem of stellar dynamic. J Diff. Eq., 25, 342–364 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Batt, J., Faltenbacher, W., Horst, E.: Stationary spherically symmetric models in stellar dynamics. Arch. Rational Mech. Anal, 93 159–183 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bellomo, N., Lachowicz, M., Polewczak, J.,Toscani, G.: Mathematical topics in nonlinear kinetic theory, II The Enskog equation. World Scientific, London (1991)

    MATH  Google Scholar 

  18. Ben Abdallah, N., Weak solutions of the initial-boundary value problem for the VlasovPoisson system. Math. Meth. in the Appl. Sci., 17,451–476 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Berthelin, F, Bouchut, F: Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics. Asymptotic analysis, 31, 153–176 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Boldrighini, C, Bunimovitch, C, Sinai, Ya.G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys., 32,477–501 (1983)

    Article  MATH  Google Scholar 

  21. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekiilen. Sitzungsberichte Akad. Wiss., Vienna, part II, 66,275–370 (1872)

    MATH  Google Scholar 

  22. Borgnakke, C, Larsen, RS., Statistical collision model for Monte-Carlo simulation of polyatomic gas mixtures. J. Comput. Phys., 18, 405 (1975)

    Article  Google Scholar 

  23. Bouchut, R: Global weak solution of the Vlasov-Poisson system for small electrons mass. Commun Part. Diff. Eqns., 16,1337–1365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bouchut, R: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys., 95,113–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bouchut, R, Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam., 14,47–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bourgain, J., Golse, R, Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas, Commun. Math. Phys., 190,491–508 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bourgat, J.R, Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann’s Theorem. Eur J. of Mechanics, B Fluids, 13,237–254 (1994)

    MATH  Google Scholar 

  28. Caflisch, R.: The fluid dynamical limit of the nonlinear Boltzmann equation. Commun. Pure Appl. Math., 33, 651–666 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Caflisch, R.: The Boltzmann equation with a soft potential, I. Linear, spatially-homogeneous. Commun. Math. Phys., 74, 71–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Caflisch, R.: The Boltzmann equation with a soft potential, II. Nonlinear, spatiallyperiodic. Commun. Math. Phys., 74,97–109 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carleman, T.: Sur la theorie de 1’equation integro-differentielle de Boltzmann. Acta Math-ematics 60,91–146 (1933)

    Article  MathSciNet  Google Scholar 

  32. Carleman, T: Problèmes mathématiques de la theorie cinétique des gaz. Almqvist & Wiksell, Uppsala (1957)

    Google Scholar 

  33. Castella, R: From the von Neumann equation to the Quantum Boltzmann equation in a deterministic framework. J. Stat. Phys., 104, 387–447 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Castella, R, Degond, P.: Convergence of the Von-Neumann equation towards the quantum Boltzmann equation in a deterministic framework. C. R. Acad. Sci. Paris Serl, 329,231–236(1999)

    MathSciNet  Google Scholar 

  35. Cercignani, C, Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Springer, New-York (1994)

    MATH  Google Scholar 

  36. Chapman, S.: The kinetic theory of simple and composite gases: viscosity, thermal conduction and diffusion, Proc. Roy. Soc. (London) A93,1–20 (1916/17)

    MATH  Google Scholar 

  37. Chapman, S., Cowling, T.G.: The mathematical theory of non-uniform gases. Cambridge University Press, Cambridge (1952)

    Google Scholar 

  38. Chen, F.F.: Introduction to plasma physics. Plenum, New-York (1977)

    Google Scholar 

  39. Chen, G.Q., Levermore, CD., Liu, T.P.: Hyperbolic Conservation Laws with Stiff Relaxation Terms and Entropy. Commun. Pure Appl. Math., 47 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Coron, R, Golse, R, Sulem, C: A classification of well-posed kinetic layer problems. Commun. Pure Appl. Math., 41,409–435 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Degond, P.: Mathematical modelling of microelectronics semiconductor devices. In AMS/IP Studies in Advanced Mathematics, Vol 15, AMS Society and International Press (2000)

    Google Scholar 

  42. Degond, P., Lemou, M.: Dispersion relations of the linearized Fokker-Planck equation, Arch. Rational Mech. Anal., 138 137–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers, SIAM J. Appl. Math., 62 1501–1519 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Degond, P., Lucquin-Desreux, B.: The Fokker-Planck Asymptotics of the Boltzmann Collision Operator in the Coulomb Case. Math. Meth. Models in the Appl. Sci., 2 167–182(1992)

    Google Scholar 

  45. Degond, P., Lucquin-Desreux, B.: Transport coefficients of plasmas and disparate mass binary gases. Transp. Theory Stat. Phys, 25 595–633 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Delcroix, J.L., Bers, A.: Physique des plasmas 1 & 2. Interéditions, Paris (1994)

    Google Scholar 

  47. De Masi, A., Esposito, R., Lebowitz, J. L.: incompressible Navier-Stokes and Euler limit of the Boltzmann equation. Commun. Pure Appl. Math., 42 1189–1214 (1989)

    Article  MATH  Google Scholar 

  48. Deshpande, S.M., A second order accurate kinetic-theory-based method for inviscid compressible flows, Tech. Report 2583, NASA, Langley, VA (1986)

    Google Scholar 

  49. Desvillettes, L.: On Asy mptotics of the Boltzmann Equation when the Collisions Become Grazing. Transp. Th. Stat. Phvs., 21, 259–276 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Desvillettes, L.: Some Applications of the Method of Moments for the Homogeneous Boltzmann and Kac Equations. Arch. Rational Mech. Anal., 123, 387–404 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Desvillettes, L.: Regularization properties of the 2 -dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules. Transp. Theory Stat. Phys., 26, 341–357 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  52. Desvillettes, L., Pulvirenti, M.: The linear Boltzmann equation for long-range forces: a derivation from particle systems. Math. Models Methods Appl. Sci., 9,1123–1145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  53. Desvillettes, L., Villani, C: On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Commun. Part. Diff. Eqns., 25, 179–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. Desvillettes, L., Villani, C: On the spatially homogeneous Landau equation for hard potentials. Part II: H-Theorem and applications. Commun. Part. Diff. Eqns. 25,261–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. DiPerna, R., Lions, PL.: On the Fokker-Planck-Boltzmann equation. Commun. Math. Phys, 120 1–23 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  56. DiPerna, R., Lions, PL.: On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Annals of Mathematics (1989)

    Google Scholar 

  57. DiPerna, R., Lions, PL.: Global solutions of the Vlasov-Maxwell systems. Commun. Pure Appl. Math., 42 729–757 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  58. Dolbeault, J., Kinetic models and quantum effects: a modified Boltzmann equation for Fermi-Dirac particles. Arch. Rational Mech. Anal., 127, 101–131 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  59. Dubroca, B., Feugeas, J.L.: Etude théorique et numérique d’une hiérarchie de modèles aux moments pour Ie transfert radiatif. C. R. Acad. Sci. Paris Ser 1,329,915–920 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ellis, R.S., Pinsky, M.A.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures et Appl., 54, 125–156 (1975)

    MathSciNet  Google Scholar 

  61. Ellis, R.S., Pinsky, M.A.: The projection of the Navier-Stokes equations upon the Euler equations. J. Math. Pures et Appl, 54, 157–182 (1975)

    MathSciNet  Google Scholar 

  62. Enskog, D.: Kinetische Theone der Vorgänge in mässig verdunntent Gasen, 1, in Allgemeiner Teil, Almqvist & Wiksell, Uppsala (1917)

    Google Scholar 

  63. Erdös, L., Yau, H.T.: Linear Boltzmann equation as the weak coupling limit of a random Schrodinger equation. Commun. Pure Appl. Math., 53, 667–735 (2000)

    Article  MATH  Google Scholar 

  64. Escobedo, M., Herrero, M.A., Velazquez, J.J.L.: A nonlinear Fokker-Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma. Trans. Amer. Math. Soc, 350, 3837–3901 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  65. Galavotti, G., Rigourous theory of the Boltzmann equation in the Lorentz gas. Nota interna 358, Istituto di Fisica, Universita di Roma (1973)

    Google Scholar 

  66. Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  67. Glassey, R.T., Schaeffer, J.: The relativistic Vlasov Maxwell system in two space dimensions: part 1. Arch. Rational Mech. Anal., 141, 331–354 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Glassey, R.T., Schaeffer, J.: The relativistic Vlasov Maxwell system in two space dimensions: part 2. Arch. Rational Mech. Anal., 141, 355–374 (1998)

    Article  MathSciNet  Google Scholar 

  69. Glassey, R.T., Strauss, W.A.: Large velocities in the relativistic Vlasov-Maxwell equations. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., 36, 615–627 (1989)

    MathSciNet  MATH  Google Scholar 

  70. Golse, F., Poupaud, F: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asymptotic Analysis 6, 135–160 (1992)

    MathSciNet  MATH  Google Scholar 

  71. Golse, F, Saint-Raymond, L.: The Navier-Stokes limit for the Boltzmann equation: convergence proof, manuscript, submitted

    Google Scholar 

  72. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math., 2,331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  73. Grad, H.: Principles of the kinetic theory of gases. In: Flügge, S. (ed) Handbuch der Physik, vol XII. Springer, Berlin Heidelberg New York (1958)

    Google Scholar 

  74. Grad, H., Asymptotic theory of the Boltzmann equation, II. In Proceeding ot the Inird International Conference on Rarefied Gases, Paris (1962)

    Google Scholar 

  75. Grad, H.: Asymptotic theory of the Boltzmann equation. The physics of Fluids, 6, 147–181 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  76. Grad, H.: Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equation, In Proceedings of the American Mathematical Society Symposia on Applied Mathematics 17, 154–183 (1965)

    MathSciNet  Google Scholar 

  77. Greengard, C., Raviart, P. A.: A boundary-value problem for the stationary Vlasov-Poisson equations: the plane diode. Commun. Pure Appl. Math., 43,473–507 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  78. Hamdache, K.: Initial boundary value problems for Boltzmann equation. Global existence of weak solutions. Arch. Rational Mech. Anal, 119, 309–353 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  79. Hilbert, D.: Begriindung der kinetischen Gastheorie. Mathematische Annalen 72, 562–577(1916/17)

    Article  MathSciNet  Google Scholar 

  80. Hill, T.L.: An introduction to statistical thermodynamics. Dover, Mineola (1986)

    Google Scholar 

  81. Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, 1. General theory. Math. Meth. in the Appl. Sci., 3, 229–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  82. Horst, E.: On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation, 2. Special cases. Math. Meth. in the Appl. Sci., 4, 19–32 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  83. Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Meth. in the Appl. Sci., 6, 262–270 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  84. Illner, R., Neunzert, H.: An existence theorem for the unmodified Vlasov Equation. Math. Meth. in the Appl. Sci., 1, 530–554 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  85. Illner, R., Shinbrot, M.: The Boltzmann equation: global existence for a rare gas in an infinite vacuum. Commun. Math. Phys., 95, 217–226 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  86. Jin, S.: Efficient Asymptotic-Preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comp., 21, 441–454 (1999)

    Article  MATH  Google Scholar 

  87. Jin, S., Slemrod, M.: Regularization of the Burnett Equations via Relaxation. J. Stat. Phys. 103, 1009–1033 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  88. Jin, S., Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math., 48 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  89. Junk, M.: Domain of Definition of Definition of Levermore’s Five-Moment System. J. Stat. Phys., 93, 1143–1167(1998)

    Article  MathSciNet  MATH  Google Scholar 

  90. Kaniel, S., Shinbrot, M.: The Boltzmann equation, I Uniqueness and local existence. Commun. Math. Phys., 58, 65–84 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  91. Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  92. Kawashima, S., Matsumura, A., Nishida, T.: On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation. Commun. Math. Phys., 70,97–124(1979)

    Article  MathSciNet  MATH  Google Scholar 

  93. Klar. A.: An Asymptotic Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit. SIAM J. Num. Anal., 35,1073–1094 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  94. Klar, A., Neunzert, H., Struckmeier, J.: Transition from Kinetic Theory to Macroscopic Fluid Equations: A Problem for Domain Decomposition and a Source for New Algorithms. Transp. Theory Stat. Phys., 29,93–106 (2000)

    Article  MATH  Google Scholar 

  95. Krall, N.A., Trivelpiece, A.W.: Principles of plasma physics. McGraw Hill, New-York, 1964.

    Google Scholar 

  96. Lanford III, O.: The evolution of large classical systems. In: Moser, J. (ed) Dynamical systems, theory and applications. LNP 35,1–111, Springer, Berlin (1975)

    Chapter  Google Scholar 

  97. Larsen, E. W.: Neutron transport and diffusion in inhomogeneous media I. J. Math. Phys., 16,1421–1427(1975)

    Article  Google Scholar 

  98. Larsen, E. W.: Neutron transport and diffusion in inhomogeneous media II. Nuclear Sci. Eng., 60, 357–368 (1976)

    Google Scholar 

  99. Larsen, E. W., Keller, J. B.: Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys., 15 75–81 (1974)

    Article  MathSciNet  Google Scholar 

  100. Lemou, M.: Linearized quantum and relativistic Fokker-Planck-Landau equations. Math. Meth. Appl. Sci., to appear

    Google Scholar 

  101. Le Tallec, P. Mallinger, E: Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys., 136, 51–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  102. Levermore, CD.: Moment Closure Hierarchies for Kinetic Theories. J. Stat. Phys., 83 1021–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  103. Lions, PL.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. I. J. Math. Kyoto Univ., 34, 391–427 (1994)

    MathSciNet  MATH  Google Scholar 

  104. Lions, PL.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. II. J. Math. Kyoto Univ., 34,429–462 (1994)

    Google Scholar 

  105. Lions, PL.: Compactness in Boltzmann’s equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ., 34, 539–584 (1994)

    MathSciNet  MATH  Google Scholar 

  106. Lions, PL.: On Boltzmann and Landau equations. Phil. Trans. Roy. Soc. London, 346, 191–204(1994)

    Article  MATH  Google Scholar 

  107. Lions, PL., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math., 105,415–430 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  108. Lions, P-L. Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. of the AMS, 7, 169–191 (1994)

    MathSciNet  MATH  Google Scholar 

  109. Lions, P-L. Perthame, B., Tadmor, E.: Kinetic formulation of the isentropic gas dynamics and p-systems. Commun. Math. Phys., 163,415–431 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  110. Maslova, N.: Kramers problem in the kinetic theory of gases. USSR Comput. Math. Math. Phys., 22, 208–219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  111. Maxwell, J.C.: On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157,49–88 (1867)

    Article  Google Scholar 

  112. Mieussens, L.: Discrete velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys., 162,429–466 (2001)

    Article  MathSciNet  Google Scholar 

  113. Mischler, S., On a Quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl., 80, 471–515 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  114. Mueller, I., Ruggeri, T: Rational extended thermodynamics. Springer, New-York (1998)

    Book  MATH  Google Scholar 

  115. Nicolaeko, B.: Shock wave solution of the Boltzmann equation as a nonlinear bifurcation problem for the essential spectrum. In: Pichon, G. (ed) Théories Cinétiques Classiques et Relativistes. CNRS, Paris (1975)

    Google Scholar 

  116. Nishida, T: Fluid dynamical limit of the nonlinear Boltzmann equation at the level of the compressible Euler equations. Commun. Math. Phys., 61, 119–148 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  117. Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzman equation. Publ. R.I.M.S. Kyoto Univ., 12, 229–239 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  118. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: chemotaxis equations, SIAM J. Appl. Math., 62,1222–1250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  119. Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Diff. Eq., 82 191–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  120. Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy principle. SIAM J. Numer. Anal., 27,1405–1421 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  121. Perthame, B.: Time decay, propagation of low moments and dispersive effects for kinetic equations. Commun. Part. Diff. Eqns., 21, 659–686 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  122. Perthame, B., Pulvirenti, M.: Weighted L bounds and uniqueness for the Boltzmann BGK model. Arch. Rational Mech. Anal., 125, 289–295 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  123. Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Diff. Eqns., 95 281–303 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  124. Poupaud, R: On a system of non linear Boltzmann equation of semiconductor physics. SIAM J. Appl. Math., 50 1593–1606 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  125. Poupaud, R: Diffusion approximation of the linear semiconductor equation: analysis of boundary layers. Asymptotic Analysis 4, 293–317 (1991)

    MathSciNet  MATH  Google Scholar 

  126. Poupaud, P.: Boundary value problems for the stationary Vlasov-Maxwell system. Porum MAth., 4 499–527 (1992)

    MathSciNet  MATH  Google Scholar 

  127. Prendergast, K.H., Xu, K., Numerical hydrodynamics from gas-kinetic theory. J. Comput. Phys., 109, 53–66 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  128. Pullin, D., I., Direct simulation methods for compressible inviscid ideal-gas flow. J. Comput. Phys., 34, 231–244 (1980)

    Article  MATH  Google Scholar 

  129. Reed, M., Simon, B.: Methods of modern mathematical physics, vol IV: analysis of operators. Academic Press, San Diego (1978)

    Google Scholar 

  130. Reggiani, L.: Hot-electron transport in semiconductors. Springer, Berlin (1985)

    Book  Google Scholar 

  131. Rezakhanlou, P.: A Stochastic Model Associated with Enskog Equation and Its Kinetic Limit. Commun. Math. Phys., 232 327–375 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  132. Schaeffer, J.: Global existence of smooth solution to the Vlasov-Poisson system in three dimensions. Commun. Part. Diff. Equs., 16, 1313–1335 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  133. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhauser, Basel (2002)

    Book  MATH  Google Scholar 

  134. Spohn, H., Large scale dynamics of interacting particles, Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  135. Takata, S., Aoki, K.: Two-surface problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory. Phys. Fluids, 11,2743–2756(1999)

    Article  MATH  Google Scholar 

  136. Ukai, S.: On the existence of global solutions of mixed problem for the nonlinear Boltz-mann equation. Proc. Japan Acad., 50 179–184 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  137. Ukai, S., Asano, K.: On the Cauchy problem of the Boltzmann equation with a soft potential. Publ. R.I.M.S. Kyoto Univ., 18 477–519 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  138. Ukai, S., Okabe, T: On classical solution in the large in time of two-dimensional Vlasov’s equation. Osaka J. Math., 15, 245–261 (1978)

    MathSciNet  MATH  Google Scholar 

  139. Villani, C: On the Landau equation: weak stability, global existence. Adv. Diff. Eq., 1 793–816(1996)

    MathSciNet  MATH  Google Scholar 

  140. Wennberg, B.: Stability and exponential convergence for the Boltzmann equation. Arch. Rational Mech. Anal., 130, 103–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Degond, P. (2004). Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Pareschi, L., Russo, G. (eds) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8200-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8200-2_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6487-3

  • Online ISBN: 978-0-8176-8200-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics