Advertisement

Abstract

Fourier methods broadly construed have applications beyond the problems discussed in previous chapters. All of these consist, in a sense, of different decompositions for functions. The motivation for the decomposition varies from a need for efficient storage, shifted point of view, to geometrically motivated adaptations of standard transforms.

Keywords

Wavelet Analysis Uncertainty Principle Scaling Function Wavelet Function Inversion Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Van der Pol and H. Bremmer, Operational Calculus Based on the Two- Sided Laplace Integral. Cambridge University Press, Cambridge, England, 2nd edition, 1955.Google Scholar
  2. 2.
    C. S. Burrus, R. A. Gopinath, and H. Guo, Wavelets and Wavelet Transforms. Prentice-Hall, Upper Saddle River, New Jersey, 1998.Google Scholar
  3. 3.
    E. U. Condon, Quantum Mechanics. McGraw-Hill, New York, New York, 1929.Google Scholar
  4. 4.
    I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1992.MATHCrossRefGoogle Scholar
  5. 5.
    J. H. Davis, Foundations of Deterministic and Stochastic Control. Birkhäuser, Boston, Basel, 2002.MATHCrossRefGoogle Scholar
  6. 6.
    E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. McGraw-Hill, New York, New York, 1955.MATHGoogle Scholar
  7. 7.
    I. Daubechies (editor), Different Perspectives on Wavelets. American Mathematical Society, Providence, Rhode Island, 1993.MATHGoogle Scholar
  8. 8.
    N. J. Fine, On the walsh functions. Transactions of the American Mathematical Society,65:372–414,1949.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    H. Harmuth, Transmission Of Information by Orthogonal Functions. Springer-Verlag, New York, New York, 1970.MATHCrossRefGoogle Scholar
  10. 10.
    Mathworks Incorporated. Signal Processing Toolbox User’s Guide. Mathworks Incorporated, Natick, Massachusetts, 2000.Google Scholar
  11. 11.
    Mathworks Incorporated. Wavelet Toolbox User’s Guide. Mathworks Incorporated, Natick, Massachusetts, 2000.Google Scholar
  12. 12.
    S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, San Diego, California, 1998.MATHGoogle Scholar
  13. 13.
    S. Pinker, The Language Instinct. William Morrow and Sons, New York, New York, 1995.Google Scholar
  14. 14.
    L. I. Schiff, Quantum Mechanics. McGraw-Hill, New York, New York, 2nd edition, 1955.MATHGoogle Scholar
  15. 15.
    I. H. Sneddon, The Use of Integral Transforms. McGraw Hill, New York, New York, 1972.MATHGoogle Scholar
  16. 16.
    A. Teolis, Computational Signal Processing with Wavelets. Birkhauser, Boston, Basel, 1998.MATHGoogle Scholar
  17. 17.
    C. J. Tranter, Integral Transforms in Mathematical Physics. Methuen and Company, London, England, 1966.MATHGoogle Scholar
  18. 18.
    J.S. Walker, Wavelets and Their Scientific Applications. CRC Press LLC, Boca Raton, Florida, 1999.MATHCrossRefGoogle Scholar
  19. 19.
    D. F. Walnut, An Introduction to Wavelet Analysis. Birkhäuser, Boston, Basel, Berlin, 2002.MATHGoogle Scholar
  20. 20.
    D. V. Widder, The Laplace Transform. Princeton University Press, Princeton New Jersey, 1946.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Jon H. Davis
    • 1
  1. 1.Deparment of Mathematics and StatisticsQueen’s UniversityCanada

Personalised recommendations