Skip to main content

Abstract

Clifford’s geometric algebra is a powerful language for physics that clearly describes the geometric symmetries of both physical space and spacetime. Some of the power of the algebra arises from its natural spinorial formulation of rotations and Lorentz transformations in classical physics. This formulation brings important quantum-like tools to classical physics and helps break down the classical/quantum interface. It also unites Newtonian mechanics, relativity, quantum theory, and other areas of physics in a single formalism and language. This lecture is an introduction and sampling of a few of the important applications in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Lounesto, Introduction to Clifford Algebras, Lecture 1 in Lectures on Clifford Geometric Algebras, ed. by R. Abłamowicz and G. Sobczyk, Birkhäuser, Boston, 2004.

    Google Scholar 

  2. W. R. Hamilton, Elements of Quaternions, Vols. I and II, a reprint of the 1866 edition published by Longmans Green (London) with corrections by C. J. Jolly, Chelsea, New York, 1969.

    Google Scholar 

  3. S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford U. Press, New York, 1995.

    MATH  Google Scholar 

  4. P. Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, Cambridge (UK), 2001.

    Book  MATH  Google Scholar 

  5. W. E. Baylis, editor, Clifford (Geometric) Algebra with Applications to Physics, Mathematics, and Engineering, Birkhäuser, Boston, 1996.

    Google Scholar 

  6. W. E. Baylis, Electrodynamics: A Modern Geometric Approach, Birkhäuser, Boston, 1999.

    MATH  Google Scholar 

  7. W. E. Baylis, J. Huschilt, and J. Wei, Am. J. Phys. 60 (1992), 788–797.

    Article  Google Scholar 

  8. D. Hestenes, New Foundations for Classical Mechanics, 2nd ed., Kluwer Academic, Dordrecht, 1999.

    MATH  Google Scholar 

  9. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, Kluwer Academic, Dordrecht, 1984.

    Book  MATH  Google Scholar 

  10. D. Hestenes, Spacetime Algebra, Gordon and Breach, New York, 1966.

    Google Scholar 

  11. W. E. Baylis and G. Jones, J. Phys. A: Math. Gen. 22 (1989), 1–16; 17-29.

    Article  MathSciNet  MATH  Google Scholar 

  12. W. E. Baylis and S. Hadi, Rotations in n dimensions as spherical vectors, in Applications of Geometric Algebra in Computer Science and Engineering, edited by L. Dorst, C. Doran, and J. Lasenby, Birkhäuser, Boston, 2002, pp. 79–90.

    Chapter  Google Scholar 

  13. W. E. Baylis, The Quantum/Classical Interface: Insights from Clifford’s Geometric Algebra, in Clifford Algebras: Applications to Mathematics, Physics, and Engineering, R. Abłamowicz, ed., Birkhäuser, Boston, 2004.

    Google Scholar 

  14. A. W. Conway, Proc. Irish Acad. 29 (1911), 1–9.

    Google Scholar 

  15. A. W. Conway, Phil. Mag. 24 (1912), 208.

    Article  MATH  Google Scholar 

  16. L. Silberstein, Phil. Mag. 23 (1912), 790–809; 25 (1913), 135-144.

    Article  Google Scholar 

  17. L. Silberstein, The Theory of Relativity, Macmillan, London, 1914.

    MATH  Google Scholar 

  18. C. Chu and T. Ohkawa, Phys. Rev. Lett. 48 (1982), 837.

    Article  Google Scholar 

  19. R. P. Feynman, QED: The Strange Story of Light and Matter, Princeton Science, 1985.

    Google Scholar 

  20. A. H. Taub, Phys. Rev. 73 (1948), 786–798.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Hestenes, J. Math. Phys. 15 (1974), 1768–1777; 1778-1786.

    Article  Google Scholar 

  22. W. E. Baylis and Y. Yao, Phys. Rev. A 60 (1999), 785–795.

    Article  MathSciNet  Google Scholar 

  23. W. E. Baylis and J. Huschilt, Phys. Lett. A 301 (2002), 7–12.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. E. Baylis, Phys. Rev. A 45 (1992), 4293–4302.

    Article  MathSciNet  Google Scholar 

  25. W. E. Baylis, Adv. Appl. Clifford Algebras 7(S) (1997), 197.

    MathSciNet  Google Scholar 

  26. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics (Volume 4 of Course of Theoretical Physics), 2nd ed. (transl. from Russian by J. B. Sykes and J. S. Bell), Pergamon Press, Oxford, 1982.

    Google Scholar 

  27. G. Trayling and W. E. Baylis, J. Phys. A 34 (2001), 3309–3324.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. S. R. Chisholm and A. K. Common, eds., Clifford Algebras and their Applications in Mathematical Physics, Riedel, Dordrecht, 1986.

    MATH  Google Scholar 

  29. A. Micali, R. Boudet, and J. Helmstetter, eds., Clifford Algebras and their Applications in Mathematical Physics, Reidel, Dordrecht, 1992.

    MATH  Google Scholar 

  30. Z. Oziewicz and B. Jancewicz and A. Borowiec, eds., Spinors, Twistors, Clifford Algebras and Quantum Deformations, Kluwer Academic, Dordrecht, 1993.

    Chapter  Google Scholar 

  31. J. Snygg, Clifford Algebra, a Computational Tool for Physicists, Oxford U. Press, Oxford, 1997.

    Google Scholar 

  32. K. Gürlebeck and W. Sprössig, Quaternions and Clifford Calculus for Physicists and Engineers, J. Wiley and Sons, New York, 1997.

    Google Scholar 

  33. R. Abłamowicz and B. Fauser, eds., Clifford Algebras and their Applications in Mathematical Physics, Vol. 1: Algebra and Physics, Birkhäuser, Boston, 2000.

    Google Scholar 

  34. R. Abłamowicz, ed., Clifford Algebras: Applications to Mathematics, Physics, and Engineering, Birkhäuser, Boston, 2003.

    Google Scholar 

  35. http://modelingnts.la.asu.edu/GC_R&D.html, http://www.mrao.cam.ac.uk/~clifford, http://www.uwindsor.ca/baylis-research

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baylis, W.E. (2004). Applications of Clifford Algebras in Physics. In: Abłamowicz, R., Sobczyk, G. (eds) Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8190-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8190-6_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3257-1

  • Online ISBN: 978-0-8176-8190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics