Continuous Function Spaces

  • Pei-Kee Lin


For any compact Hausdorff space K and any Banach space K , let C(K, X) be the space of all continuous X-valued functions on K with the norm
$$ \left\| f \right\| = \mathop {\sup }\limits_{t \in K} \left\| {f(t)} \right\|_X . $$


Banach Space Vector Measure Nonempty Closed Convex Subset Compact Hausdorff Space Strong Operator Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.6 References

  1. [1]
    R.G. Bilyeu and P.W. Lewis, Vector measures and weakly compact operators on continuous function spaces: a survey, in Geometry of Normed Linear Spaces, Conference on Measure Theory and its Applications, Proceedings of the 1980 conference at Northern Illinois University. Contemp. Math., vol. 52, 96–101Google Scholar
  2. [2]
    F. Bombai and P. Cembranos, The Dieudonné property for C(K, E), Trans. Amer. Math. Soc. 285 (1984), 649–656.MathSciNetGoogle Scholar
  3. [3]
    F. Bombai and P. Cembranos, Characterization of some classes of operators on spaces of vector-valued continuous functions, Math. Proc. Camb. Phil. Soc. 97 (1985), 137–146.CrossRefGoogle Scholar
  4. [4]
    F. Bombai and P. Cembranos, Dieudonné operators on C(K, E), Bulletin Polish Acad. Sci. 34 (1986), 301–305.Google Scholar
  5. [5]
    F. Bombai and I. Villanueva, On the Dunford-Pettis property of the tensor product of C(K) spaces, Proc. Amer. Math. Soc. 129 (2001), 1359–1363.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Bourgain, H is a Grothendieck space, Studia Math. 75 (1983), 193–216.MathSciNetMATHGoogle Scholar
  7. [7]
    J. Bourgain and G. Pisier, a construction of L -spaces and related Banach spaces, Bol. Soc. Brasil. Mat. 14 (1983), 109–123.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Qingying Bu and J. Diestel, Observations about the projective tensor product of Banach spaces, I-l pX, 1 < p < ∞, Quaestiones Math. 24 (2001), 1–15.MathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Cembranos, The hereditary Dunford-Pettis property for l 1 (E), Proc. Amer. Soc. Math. 108 (1990), 947–950.MathSciNetMATHGoogle Scholar
  10. [10]
    P. Cembranos, The hereditary Dunford-Pettis property for C(K, E), Illinois J. Math. 31 (1987), 365–373.MathSciNetMATHGoogle Scholar
  11. [11]
    P. Cembranos, N.J. Kalton, E. Saab, and P. Saab, Pelcynski’s property (V) on C(Ω, E) spaces, Math. Ann. 271 (1985), 91–97.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    F. Delbaen, Weakly compact operators on the disc algebra, L. Algebra 45 284–294.Google Scholar
  13. [13]
    S. Díaz and G. Schlüchtermann, Quotients of vector-valued function spaces, Math. Proc. Camb. Phil. Soc. 126 (1999), 109–116.MATHCrossRefGoogle Scholar
  14. [14]
    J. Diestel, A survey of results related to the Dunford-Pettis property, in Topology and Geometry in Linear Spaces, Proc. of the Conf. on Integration, Contemporary Math, vol 2, Amer. Math. Soc., Providence, RI (1980), 15–60.MathSciNetGoogle Scholar
  15. [15]
    J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press (1995).Google Scholar
  16. [16]
    J. Diestel and J.J. Uhl, Jr., Vector Measures, Math. Survey 15, Amer. Math. Soc., Providence, RI (1977).Google Scholar
  17. [17]
    N. Dunford and J. Schwartz, Linear Operators, I, Interscience Publishers, New York 1958.MATHGoogle Scholar
  18. [18]
    J. Elton, dissertation, Yale University, New Haven, CT.Google Scholar
  19. [19]
    G. Emmanuele, Another proof of a result of N.J. Kalton, E. Saab and P. Saab on the Dieudonné property in C(K,E), Glasgow Math. J. 31 (1989), 137–140.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    G. Emmanuele and W. Hensgen, Property (V) of Pelczyński in projective tensor products, Proc. Roy. Irish Acad. Sect. A 95 (1995), 227–231.MathSciNetMATHGoogle Scholar
  21. [21]
    M. González and J.N. Gutiérrez, The Dunford-Pettis property on tensor products, Math. Proc. Camb. Phil. Soc. 131 (2001), 185–192.MATHCrossRefGoogle Scholar
  22. [22]
    A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type C(K), Canad. J. Math. 5 (1953), 129–173.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    W. Hensgen, A simple proof of Singer’s representation theorem, Proc. Amer. Math. Soc. 124 (1996), 3211–3212.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    N.J. Kalton, E. Saab, and P. Saab, On the Dieudonné property for C(K,E), Proc. Amer. Math. Soc. 96 (1986), 50–52.MathSciNetMATHGoogle Scholar
  25. [25]
    H. Knaust and E. Odell, On c 0 sequence in Banach spaces, Israel J. Math. 67 (1989), 153–169.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    D.R. Lewis and S. Stegall, Banach spaces whose dual are isomorphic to l 1 (Γ), J. Funct. Anal. 12 (1971), 167–177.MathSciNetGoogle Scholar
  27. [27]
    J. Lindenstrauss and A. Pełczynski, Absolutely summing operators and their application, Studia Math. 26 (1968), 275–326.Google Scholar
  28. [28]
    F. Lust, Produits tensoriels injectifs d’espaces de Sidon, Colloq. Math. 32 (1975), 286–289.MathSciNetGoogle Scholar
  29. [29]
    T.V. Panchapagesan, A simple proof of the Grothendieck theorem on the Dieudonné property of C 0(T), Proc. Amer. Math. Soc. 129 (2000), 823–831.MathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Pełczynski, On Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. 10 (1962), 641–648.MATHGoogle Scholar
  31. [31]
    A. Pełczynski and W. Szlenk, An example of a non-shrinking basis, Rev. Roumaine Math. Pures Appl. 10 (1965), 961–966.MathSciNetMATHGoogle Scholar
  32. [32]
    N. Randrianantoanina. Pełczyński’s property (V) on spaces of vector-valued functions, Colloquium Math. 71 (1996), 63–78.MathSciNetMATHGoogle Scholar
  33. [33]
    N. Randrianantoanina. Complemented copies of l 1 in spaces of vector measures and applications, Math. Nachr. 202 (1999), 109–123.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    H.L. Royden, Real Analysis, (3rd ed.) Macmillan Publ. Co., New York (1988).MATHGoogle Scholar
  35. [35]
    R.A. Ryan, The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. Math. 35 (1987), 785–792.MathSciNetMATHGoogle Scholar
  36. [36]
    E. Saab and P. Saab, A stability property of a class of Banach spaces not containing a complemented copy of l 1, Proc. Amer. Math. Soc. 84 (1982), 44–46.MathSciNetMATHGoogle Scholar
  37. [37]
    E. Saab and P. Saab, On stability problems of some properties in Banach spaces, in Function Spaces, Lecture Notes in Pure and Applied Mathematics 136 (ed. K. Jarosz), Marcel Dekker (1992), 367–394.Google Scholar
  38. [38]
    I. Singer, Linear functions on the space of continuous mappings of a compact Hausdorff space into a Banach space (in Russian), Rev. Roum. Math. Pures Appl. 2 (1957), 301–315.MATHGoogle Scholar
  39. [39]
    I. Singer, Sur les applications linéaires intégrales des espaces de fonctions continues, I Rev. Roum. Math. Pures Appl. 4 (1959), 391–401.MATHGoogle Scholar
  40. [40]
    I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, vol. 171 Springer-Verlag, Berlin, Heidelberg, New York (1970).MATHGoogle Scholar
  41. [41]
    C. Swartz, Unconditionally converging operators on the space of continuous functions, Rev. Roumaine Math. Pures Appl. 17 (1972), 1695–1702.MathSciNetMATHGoogle Scholar
  42. [42]
    M. Talagrand, Weak Cauchy sequences in L l (E), Amer. J. Math. 106 (1984), 703–724.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    M. Talagrand, Quand l’espace des mésures a variation bornée est-l faiblement séquentiellent complet? Proc. Amer. Math. Soc. 90 (1984), 285–288.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Pei-Kee Lin
    • 1
  1. 1.Department of MathematicsUniversity of MemphisMemphisUSA

Personalised recommendations