Köthe-Bochner Function Spaces

  • Pei-Kee Lin


In this chapter, we introduce the Köthe-Boehner function spaces, and provide some basic results in this area.


Banach Space Function Space Banach Lattice Vector Measure Measurable Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.8 References

  1. [1]
    Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol 1, Amer. Math. Soc. Colloquium Publications Vol 48. (2000).Google Scholar
  2. [2]
    R.P. Boas, Jr., Some uniformly convex spaces, Bull. Amer. Math. Soc. 46 (1940), 304–311.MathSciNetCrossRefGoogle Scholar
  3. [3]
    R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer-Verlag, New York (1983).Google Scholar
  4. [4]
    J. Bourgain, Dunford-Pettis operator on L 1 and Radon-Nikodým property, Israel J. Math. 37 (1980), 34–47.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J. Bourgain and H.P. Rosenthal, Application of the theory of semiembeddings to a Banach space theory, J. Funct. Anal. 52 (1983), 149–188.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    A.V. Buhvalov, Radon-Nikodým property in Banach spaces of measurable vector functions, Math. Notes, 26 (1979), 939–944.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414.MathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Cerdà, H. Hudzik, and M. Mastyło, Geometric properties in Köthe-Bochner spaces, Math. Proc. Camb. Phil. Soc. 120 (1996), 521–533.MATHCrossRefGoogle Scholar
  9. [9]
    S. Chen and B.-L. Lin, Strongly extreme point in Köthe-Bochner spaces, Rocky Mountain J. Math. 27 (1997), 1055–1063.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    M.M. Day, Some more uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 504–507.MathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Diestel, Geometry of Banach Spaces: Selected Topics, Lecture Notes in Math. 485, Springer-Verlag, New York (1975).Google Scholar
  12. [12]
    J. Diestel, Sequences and Senes in Banach Spaces, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
  13. [13]
    J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press (1995).Google Scholar
  14. [14]
    J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Survey 15, Amer. Math. Soc., Providence, RI (1977).Google Scholar
  15. [15]
    N. Dinculeanu, Vector Measures, Pergamon Press, New York (1967).Google Scholar
  16. [16]
    G. Emmanuele and A. Villami, Lifting of rotundity properties from E to L P (μ, E), Rocky Mountain J. Math. 17 (1987), 617–627.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    T. Figiel, N. Ghoussoub, and W.B. Johnson, On the structure of nonweakly compact operator on Banach lattices, Math. Ann 257 (1981), 317–314.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    H. Hudzik, A. Kamińka, and M. Mastyło, Montonicty and rotundity properties in Banach lattices, Rocky Mountain J. Math. 30 (2000), 933–950.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    H. Hudzik and R. Landes, Characteristic of convexity of Köthe function spaces, Math. Ann. 294 (1992), 117–124.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    A. Ionescu-Tulcea and C. Ionescu-Tulcea, Topics in the Theory of Liftings, Springer-Verlag, Berlin (1969).CrossRefGoogle Scholar
  21. [21]
    W.J. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric Structures in Banach Spaces, Memoirs of Amer. Math. Soc. vol. 217, (1979).Google Scholar
  22. [22]
    M.I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L p, Studia Math. 21 (1962), 161–176.MathSciNetMATHGoogle Scholar
  23. [23]
    J.P. Kahane, Some Random series of Functions, 2nd ed. Cambridge Studies in Advanced Mathematics 5, Cambridge University Press (1985).Google Scholar
  24. [24]
    A. Kamińska, Type and cotype in vector-valued function spaces, Math. Japonica 37 (1992), 743–749.MATHGoogle Scholar
  25. [25]
    A. Kamińska and B. Turett, Rotundity in Köthe spaces of vector-valued functions, Can. J. Math. 41 (1989), 659–675.MATHCrossRefGoogle Scholar
  26. [26]
    T. Landes, Permanence properties of normal structure, Pacific J. Math, 110 (1984), 125–143.MathSciNetMATHGoogle Scholar
  27. [27]
    T.R. Landes, Normal structure and the sum-property, Pacific J. Math, 123 (1986), 127–147.MathSciNetMATHGoogle Scholar
  28. [28]
    I.E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54 (1976), 245–265.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    P.K. Lin and H. Sun, Extremal structure in Köthe function spaces, J. Math. Analysis and Applications 218 (1998), 136–154.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    J. Lindenstrauss and H.P. Rosenthal, The L p-spaces, Israel Math. J. 7 (1969), 325–349.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Lecture Notes in Math. 338, Springer-Verlag (1973).Google Scholar
  32. [32]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II, Springer-Verlag, (1979).Google Scholar
  33. [33]
    H.P. Lotz, N.T. Peck, and H. Porta, Semiembeddings of Banach spaces, Proc. Edinburgh Math. Soc. 22 (1979), 233–240.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    B. Maurey and G. Pisier, Séries de variables aléatoires indépendantes et properiétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45–90.MathSciNetMATHGoogle Scholar
  35. [35]
    R. Pluciennik and P. Kolwicz, P-convexity of Orlicz-Bochner spaces, Proc. Amer. Math. Soc. 126 (1998), 2315–2322.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    N. Randrianantoanina and E. Saab, The complete continuity property in Bochner function spaces, Proc. Amer. Math. Soc. 117 (1993), 1109–1114.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    E. Saab, On the Dunford-Pettis operators, Canad. Math. Bull. 25 (1982), 207–209.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    E. Saab, On the Dunford-Pettis operators that are Pettis-representable, Proc. Amer. Math. Soc. 85 (1982), 363–365.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    M.A. Smith, Product of Banach spaces that are uniformly rotund in every direction, Pacific J. Math. 73 (1977), 215–219.MATHGoogle Scholar
  40. [40]
    M. Smith and B. Turett, Rotundity in Lebesgue-Bochner function spaces, Trans. Amer. Math. Soc. 257 (1980), 105–118.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    K. Sundaresan, The Radon-Nikodým Theorem for Lebesgue-Bochner function spaces, J. Funct. Anal. 24 (1977), 276–279.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    M. Talagrand, Weak Cauchy sequences in L 1 (E), Amer. J. Math. 106 (1984), 703–724.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    M. Talagrand, Pettis Integral and Measure Theory, Memoirs AMS vol 307 (1984).Google Scholar
  44. [44]
    M. Talagrand, Some weakly compact operators between Banach lattice do not factor through reflexive Banach lattices, Proc. Amer. Math. Soc. 96 (1986), 95–102.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    B. Turett and J.J. Uhl, Jr., L p (μ, X) has the Radon-Nikodým property if X does by martingales, Proc. Amer. Math. Soc. 61 (1976) 347–350.MathSciNetGoogle Scholar
  46. [46]
    L. Tzafriri, Reflexivity in Banach lattices and their sub spaces, J. Funct. Anal. 10 (1972), 1–18.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    L.W. Weis, Banach lattices with subsequence splitting property, Proc. Amer. Math. Soc. 105, (1989), 87–96.MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Math. 25 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Pei-Kee Lin
    • 1
  1. 1.Department of MathematicsUniversity of MemphisMemphisUSA

Personalised recommendations