Advertisement

Convexity and Smoothness

  • Pei-Kee Lin

Abstract

In the first part of this chapter (Section 2.1 and 2.2), we present some basic results about various types of convexity and smoothness conditions that the norm of a Banach space may satisfy. For convexity, we consider strictly convex, uniformly convex, locally uniformly convex, fully rotund, and nearly uniformly convex spaces. Particularly, we present a proof of the Schlumprecht-Odell theorem that shows that every separable reflexive Banach space admits an equivalent 2R norm. On the smoothness, we consider smooth, Fréchet smooth, uniformly Gâteaux smooth and uniformly smooth spaces. In the second part (Section 2.3), we introduce the spreading model, and we show that a Banach space X has the weak Banach-Saks property if and only if X does not have an ℓ1-spreading model.

Keywords

Banach Space Equivalent Norm Convex Banach Space Spreading Model Smooth Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.5 References

  1. [1]
    G.A. Aleksandrov and I.P. Dimitrov, On the equivalent weakly midpoint locally uniformly rotund renorming of the space l (in Russian), in Mathatics and Mathematical Education (Sunny Beach, 1985), 189–191.Google Scholar
  2. [2]
    K.W. Anderson, Midpoint local uniform convexity and other geometric properties of Banach spaces, dissertation, University of Illinois, 1960.Google Scholar
  3. [3]
    S. Banach, Theory of Linear Operations, North Holland Mathematical Library, vol 38 (1987).Google Scholar
  4. [4]
    S. Banach and S. Saks, Sur la convergence forte dans les champs L p, Studia Math. 2 (1930), 51–57.MATHGoogle Scholar
  5. [5]
    B. Beauzamy, Espaces d’Interpolation réels: Topologie et Géométrie, Lecture Notes in Math. 666, Springer-Verlag (1978).Google Scholar
  6. [6]
    B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.MathSciNetMATHGoogle Scholar
  7. [7]
    B. Beauzamy, Introduction to Banach Spaces and Their Geometry, Notas de Mathematica, 68, North Holland, Amsterdam (1982).Google Scholar
  8. [8]
    B. Beauzamy, Propriété de Banach-Saks, Studia Math. 66 (1980) 227–235.MathSciNetMATHGoogle Scholar
  9. [9]
    B. Beauzamy and J.T. Lapresté, Modèles etalés des espaces de Banach, Travaux ens cours, Hermann, Paris (1984).Google Scholar
  10. [10]
    J. Bernai and F. Sulliva, Multi-dimensional volumes, superreflexive and normal structure in Banach spaces, Illinois J. Math. 27 (1983), 501–513.MathSciNetGoogle Scholar
  11. [11]
    J. Bourgain, l /C 0 has no equivalent strictly convex norm, Proc. Amer. Math. Soc. 78 (1980), 225–226.MathSciNetMATHGoogle Scholar
  12. [12]
    A. Brunei and L. Sucheston, On J-convexity and ergodic super-properties of Banach spaces, Trans. Amer. Math. Soc. 204 (1975), 79–90.MathSciNetGoogle Scholar
  13. [13]
    J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414.MathSciNetCrossRefGoogle Scholar
  14. [14]
    D.F. Cudia, Rotundity, Proc. Sympos. Pure Math. Vol 7 (1963) Amer. Math. Soc. Providence, RI, 73–97.Google Scholar
  15. [15]
    M.M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317.MathSciNetCrossRefGoogle Scholar
  16. [16]
    M.M. Day, Uniform convexity in factor and conjugate spaces, Ann. of Math. 45 (1944), 375–385.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    M.M. Day, Strict convexity and smoothness of norm spaces, Trans. Amer. Math. Soc. 78 (1955), 516–528.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    M.M. Day, Normed Linear Spaces, Springer-Verlag, New York (1973).MATHGoogle Scholar
  19. [19]
    R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific and Technical (1993).Google Scholar
  20. [20]
    M.M. Day, R.C. James, and S. Swaminatham, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), 1051–1059.MathSciNetCrossRefGoogle Scholar
  21. [21]
    J. Diestel, Geometry of Banach Spaces: Selected Topics, Lecture Notes in Math. 485, Springer-Verlag, New York (1975).Google Scholar
  22. [22]
    J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New York (1984).CrossRefGoogle Scholar
  23. [23]
    P. Dowling, Z. Hu, and M.A. Smith, MLUR renorming of Banach spaces, Pacific J. Math. 170 (1995) 473–482.MathSciNetMATHGoogle Scholar
  24. [24]
    K. Fan and I. Glicksburg, Fully convex normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 947–953.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    K. Fan and I. Glicksburg, Some geometric properties of the spheres in a normed linear spaces, Duke Math. J. 25 (1958), 553–568.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    N.R. Farnum, The Banach-Saks Theorem in C(S), Can. J. Math. 26 (1974), 91–97.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    A.L. Garkavi, The best possible net and best possible cross-section of a set in a normed space, Amer. Math. Soc. Transi. 39 (1964), 111–132.Google Scholar
  28. [28]
    J.R. Giles, Convex Analysis with Application in Differentiation of Convex Functions, Research Notes in Math. 58 Pitman, Boston-London-Melbourne (1982).Google Scholar
  29. [29]
    G. Godefroy and V. Zizler, Roughness properties of norm on non-Asplund spaces, Michigan Math. J. 38 (1991), 461–466.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    Z. Hu, W.B. Moors, and M.A. Smith, On a Banach space space without a weak midpoint locally uniformly rotund norm, Bull. Austral. Math. Soc., 56 (1997), 193–196.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743–749.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    M.I. Kadec, Relation between some properties of convexity of the unit ball of a Banach space, Functional Anal. Appl. 16 (1982), 204–206.Google Scholar
  33. [33]
    W.A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72 (1965), 1004–1006.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    V.L. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960-61), 25–34.MathSciNetMATHGoogle Scholar
  35. [35]
    H. Knaust, E. Odell, and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach space, Positivity 3 (1999), 173–199.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    D.N. Kutzarova and P.K. Lin, Remarks about Schlumprecht space, Proc. Amer. Math. Soc. 128 (2000), 2059–2068.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    D.N. Kutzarova and S.L. Troyanski, On equivalent lattice norms which are uniform convex or uniform differentiable in every direction in Banach lattices with a weak unit, Sedica Bulgaricae Math. Publ. 9 (1983), 249–262.MathSciNetMATHGoogle Scholar
  38. [38]
    Bor-Luh Lin and Xin-Tai Yu, On the k-uniform rotund and the fully convex Banach spaces, J. Math. Analysis and Applications 110 (1985), 407–410.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    J. Lindenstrass, Weakly compact sets-their topological properties and the Banach spaces they generate, Sympos. on infinite dimensional topology, Ann. of Math. Studies 69 (1972), 235–275.Google Scholar
  40. [40]
    A.R. Lovaglia, Locally uniformly convex Banach spaces, Trans. Amer. Math. Soc. 78 (1955), 225–238.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    D.P. Milman and V.D. Milman, The geometry of nested families with empty intersection, the structure of the unit sphere in a nonreflexive space, Amer. Math. Soc. Transi. 85 (1969), 233–243.Google Scholar
  42. [42]
    V.D. Milman, Infinite-dimensional geometry of the unit sphere in a Banach space, Soviet Math. Dokl. 8 (1967), 1440–1444.Google Scholar
  43. [43]
    E. Odell and Th. Schlumprecht, On the richness of the set of p’s in Krivine’s theorem, Oper. Theory: Adv. Appl. 77 (1995), 177–198.MathSciNetGoogle Scholar
  44. [44]
    E. Odell and Th. Schlumprecht, Asymptotic properties of Banach spaces under renormings, J. Amer. Math. Soc. 11 (1998), 175–188.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    E. Odell and Th. Schlumprecht, A problem on spreading models, J. Funct. Anal. 153 (1998), 249–261.MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer-Verlag (1989).Google Scholar
  47. [47]
    B.J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), 249–253.MathSciNetCrossRefGoogle Scholar
  48. [48]
    J. Radon, Theorie und Anwendungen der absolut additiven Mengen Funktionen, Sitzungsber. Akad. Wiss. Wien 122 (1913), 1295–1438.MATHGoogle Scholar
  49. [49]
    J. Rainwather, Local uniform convexity of Day’s norm on c 0 (Γ), Proc. Amer. Math. Soc. 22 (1969), 335–339.MathSciNetGoogle Scholar
  50. [50]
    M.A. Smith, Some examples concerning rotundity in Banach spaces, Math. Ann. 233 (1978), 155–161.MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    M.A. Smith, A Banach space that is MLUR but not HR, Math. Ann. 256 (1981), 277–279.MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    V.L. Šmulian, On Some geometrical properties of the unit sphere in the space of the type (B), Mat. Sbornik 6 (1938), 77–89.Google Scholar
  53. [53]
    V.L. Šmulian, Sur la dérivabilité de la norme dans Vespaces de Banach, C.R. Acad. Sci. URSS (Doklady) N.S. 27 (1940), 643–648.MATHGoogle Scholar
  54. [54]
    S.L. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173–180.MathSciNetMATHGoogle Scholar
  55. [55]
    V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971), 1–35.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Pei-Kee Lin
    • 1
  1. 1.Department of MathematicsUniversity of MemphisMemphisUSA

Personalised recommendations