Skip to main content

Multiple Scattering Theory and Integral Equations

  • Chapter
Integral Methods in Science and Engineering

Abstract

Multiple scattering theory describes the transport of particles interacting with a host medium through the processes of scattering, absorption, and emission, the first-mentioned being the main one. It is based on the transport equation, a kinetic equation satisfied by the distribution function of the traveling particles. This is a mixed equation: the unknown function is differentiated with respect to some variables and integrated with respect to other variables. It can be transformed into an integral equation, whose kernel depends on the nature of the scattering process we are considering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Chevallier, Stellar atmospheres modeling, this volume, 37–40.

    Google Scholar 

  2. J. J. Duderstadt and W.R. Martin, Transport Theory, John Wiley and Sons, New York, 1979.

    MATH  Google Scholar 

  3. G.C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, Oxford, 1973.

    Google Scholar 

  4. M.N. Ozisik, Radiative Transfer, John Wiley and Sons, New York, 1973.

    Google Scholar 

  5. M.M.R. Williams, Mathematical Methods in Particle Transport Theory, Butterworths, London, 1971.

    Google Scholar 

  6. R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1984.

    Google Scholar 

  7. J. Lenoble (ed.), Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, A. Deepak, Hampton, VA, 1985.

    Google Scholar 

  8. M. Ahues, A. Largillier, and O. Titaud, The roles of weak singularity and the grid uniformity in relative error bounds, Numer. Functional Anal. Optimization 22 (2002), 789–814.

    Article  MathSciNet  Google Scholar 

  9. B. Rutily and J. Bergeat, The solution of the Schwarzschild-Milne integral equation in a homogeneous isotropically scattering plane-parallel medium, J. Quantitative Spectr. Radiative Transfer 51 (1994), 823–847.

    Article  Google Scholar 

  10. B. Rutily and L. Chevallier, A study of two basic auxiliary functions in radiative transfer theory (in preparation).

    Google Scholar 

  11. M. Ahues, A. Largillier, and B.V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, Boca Raton, 2001.

    Book  MATH  Google Scholar 

  12. O. Titaud, Reduction of computation in the numerical resolution of a second kind weakly singular Fredholm equation, this volume, 255–260.

    Google Scholar 

  13. O. Titaud, Analyse et résolution numérique de l’équation de transfert, PhD Thesis, Université Jean Monnet, Saint-Étienne (France), available at http://www.univ-st-etienne.fr/anum/annuaire/otitaud/anum/annuaire/otitaud, 2001.

    Google Scholar 

  14. P.B. Vasconcelos and F. d’Almeida, A parallel code for integral equations on a cluster of computers, this volume, 261–266.

    Google Scholar 

  15. G.P. Panasenko, Method of asymptotic partial decomposition of domain, Math. Models Methods Appl. Sci. 8 (1998), 139–156.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Panasenko, B. Rutily, and O. Titaud, Asymptotic analysis of integral equations for great interval and its application to stellar radiative transfer, C.R. Acad. Sci. Paris Sér. IIb 330 (2002), 735–740.

    MATH  Google Scholar 

  17. F. Paletou, Transfert de rayonnement: méthodes itératives, C.R. Acad. Sci. Paris Sér. IV 2 (2001), 885–898.

    Google Scholar 

  18. R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  19. L.H. Auer, Acceleration of convergence, in Stellar Atmospheres: Beyond Classical Models, L. Crivellari et al. (eds.), NATO ASI Ser., Kluwer, Holland, 1991, 9–17.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rutily, B. (2004). Multiple Scattering Theory and Integral Equations. In: Constanda, C., Largillier, A., Ahues, M. (eds) Integral Methods in Science and Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-8184-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-8184-5_34

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6479-8

  • Online ISBN: 978-0-8176-8184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics