Advertisement

Multiple Scattering Theory and Integral Equations

  • Bernard Rutily

Abstract

Multiple scattering theory describes the transport of particles interacting with a host medium through the processes of scattering, absorption, and emission, the first-mentioned being the main one. It is based on the transport equation, a kinetic equation satisfied by the distribution function of the traveling particles. This is a mixed equation: the unknown function is differentiated with respect to some variables and integrated with respect to other variables. It can be transformed into an integral equation, whose kernel depends on the nature of the scattering process we are considering.

Keywords

Integral Equation Transport Equation Fredholm Integral Equation Transport Theory Radiative Transfer Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Chevallier, Stellar atmospheres modeling, this volume, 37–40.Google Scholar
  2. 2.
    J. J. Duderstadt and W.R. Martin, Transport Theory, John Wiley and Sons, New York, 1979.MATHGoogle Scholar
  3. 3.
    G.C. Pomraning, The Equations of Radiation Hydrodynamics, Pergamon Press, Oxford, 1973.Google Scholar
  4. 4.
    M.N. Ozisik, Radiative Transfer, John Wiley and Sons, New York, 1973.Google Scholar
  5. 5.
    M.M.R. Williams, Mathematical Methods in Particle Transport Theory, Butterworths, London, 1971.Google Scholar
  6. 6.
    R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, Masson, Paris, 1984.Google Scholar
  7. 7.
    J. Lenoble (ed.), Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, A. Deepak, Hampton, VA, 1985.Google Scholar
  8. 8.
    M. Ahues, A. Largillier, and O. Titaud, The roles of weak singularity and the grid uniformity in relative error bounds, Numer. Functional Anal. Optimization 22 (2002), 789–814.MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Rutily and J. Bergeat, The solution of the Schwarzschild-Milne integral equation in a homogeneous isotropically scattering plane-parallel medium, J. Quantitative Spectr. Radiative Transfer 51 (1994), 823–847.CrossRefGoogle Scholar
  10. 10.
    B. Rutily and L. Chevallier, A study of two basic auxiliary functions in radiative transfer theory (in preparation).Google Scholar
  11. 11.
    M. Ahues, A. Largillier, and B.V. Limaye, Spectral Computations for Bounded Operators, Chapman and Hall/CRC, Boca Raton, 2001.CrossRefMATHGoogle Scholar
  12. 12.
    O. Titaud, Reduction of computation in the numerical resolution of a second kind weakly singular Fredholm equation, this volume, 255–260.Google Scholar
  13. 13.
    O. Titaud, Analyse et résolution numérique de l’équation de transfert, PhD Thesis, Université Jean Monnet, Saint-Étienne (France), available at http://www.univ-st-etienne.fr/anum/annuaire/otitaud/anum/annuaire/otitaud, 2001.Google Scholar
  14. 14.
    P.B. Vasconcelos and F. d’Almeida, A parallel code for integral equations on a cluster of computers, this volume, 261–266.Google Scholar
  15. 15.
    G.P. Panasenko, Method of asymptotic partial decomposition of domain, Math. Models Methods Appl. Sci. 8 (1998), 139–156.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    G. Panasenko, B. Rutily, and O. Titaud, Asymptotic analysis of integral equations for great interval and its application to stellar radiative transfer, C.R. Acad. Sci. Paris Sér. IIb 330 (2002), 735–740.MATHGoogle Scholar
  17. 17.
    F. Paletou, Transfert de rayonnement: méthodes itératives, C.R. Acad. Sci. Paris Sér. IV 2 (2001), 885–898.Google Scholar
  18. 18.
    R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.Google Scholar
  19. 19.
    L.H. Auer, Acceleration of convergence, in Stellar Atmospheres: Beyond Classical Models, L. Crivellari et al. (eds.), NATO ASI Ser., Kluwer, Holland, 1991, 9–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Bernard Rutily

There are no affiliations available

Personalised recommendations